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Object-wise Contrastive Learning (OCL)

Semi-Supervised Object Detection Main Results

⚫ Aims to boost detection performance by leveraging extra 
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2. Contrastive Learning
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Regression-Uncertainty-guided Pseudo-labeling (RUPL)

Ablation Study

⚫ Since the pseudo-labels are noisy, pseudo-label filtering is crucial

Previous Works & Limitations

⚫ Teacher-Student Framework [1]

→ Teacher network generates pseudo-labels for unlabeled data 
to assist the training of a student network

⚫ Existing classification scores and localization optimization is 
suboptimal

→ Lack of labeled data makes classification scores less 
discriminative, 
→ Measurement of pseudo-labels’ localization quality is less 
investigated

Key Ideas

⚫ Object-wise Contrastive Learning (OCL) enhances the 
discriminativeness of the classification score

⚫ Regression-Uncertainty-guided Pseudo-Labeling (RUPL) models 
aleatoric uncertainty of object localization for label filtering

Same instance, Different augmentation
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⚫ Uncertainty-aware Regression Loss [2]

⚫ Pseudo-label for Regression

⚫ Object-wise Contrastive Loss
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⚫ Propose a two-step pseudo-label filtering for SSOD

⚫ Achieve remarkable performance gain against our baseline and 
show competitive results compared to other SOTA

⚫ Deal with both classification and regression heads
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⚫ Pseudo-label for Classification

Framework Overview
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Methods VOC VOC + coco20cls

Baseline [2] 48.69 50.34

Ours 52.04 53.88

Methods COCO 1% COCO 5% COCO 10% Additional coco-35k

Baseline [2] 20.75 28.27 31.50 41.30 36.36

Ours 21.63 30.66 33.53 41.89 37.13

OCL RUPL AP50:95 AP50 AP75
(1) √ √ 19.42 34.65 19.36

(2) √ 18.95 33.82 19.07

(3) √ 18.34 35.21 17.16

(4) 18.05 34.45 17.09

Method AP50:95
Box jittering [4] 18.15

Predicted IoU [5] 18.85

Aleatoric uncertainty [3] (Ours) 18.95

Method AP50:95
w/o CL 18.05

Self-sup CL 18.24

OCL (Ours) 18.34

⚫ Previous Works …

→ Adopted classification score to select pseudo-labels with 
confidence higher than a pre-defined threshold
→ Heuristic designs to measure the localization quality

⚫ OCL enhances discriminativeness of classification score

⚫ RUPL learns regression uncertainty to measure the localization quality

High localization quality

Low localization quality

Low uncertainty High uncertainty


