# Semi-supervised Object Detection with Object-wise Contrastive learning and regression uncertainty





The University Sheffield.

### **Semi-Supervised Object Detection**

- Aims to boost detection performance by leveraging <u>extra</u> unlabeled data
- Since the <u>pseudo-labels are noisy</u>, pseudo-label filtering is crucial

#### **Previous Works & Limitations**

#### • Teacher-Student Framework [1]

→ Teacher network generates pseudo-labels for unlabeled data to assist the training of a student network

#### • Previous Works ...

 $\rightarrow$  Adopted <u>classification score</u> to select pseudo-labels with confidence higher than a pre-defined threshold  $\rightarrow$  Heuristic designs to measure the localization quality

Existing classification scores and localization optimization is suboptimal

 $\rightarrow$  Lack of labeled data makes **classification scores** less discriminative,

 $\rightarrow$  Measurement of pseudo-labels' **localization quality** is <u>less</u> investigated

#### Key Ideas

#### • Object-wise Contrastive Learning (OCL) enhances the discriminativeness of the classification score



#### Regression-Uncertainty-guided Pseudo-Labeling (RUPL) models aleatoric uncertainty of object localization for label filtering



# Honggyu Choi<sup>1</sup>, Zhixiang Chen<sup>2</sup>, Xuepeng Shi<sup>3</sup>, Tae-Kyun (T-K) Kim<sup>1,3</sup>

<sup>1</sup>KAIST, <sup>2</sup>The University of Sheffield, <sup>3</sup>Imperial College London





Imperial College



# **3. Experiments**

#### Main Results

|              | Methods    | S VO    | C VOC    | C + coco20cls |      |
|--------------|------------|---------|----------|---------------|------|
|              | Baseline [ | 2] 48.6 | 9        | 50.34         |      |
|              | Ours       | 52.0    | 4        | 53.88         |      |
| Methods      | COCO 1%    | COCO 5% | COCO 10% | Additional    | coco |
| Baseline [2] | 20.75      | 28.27   | 31.50    | 41.30         | 36.3 |
| Ours         | 21.63      | 30.66   | 33.53    | 41.89         | 37.1 |

### **Ablation Study**

|     |     |      | -                   |           |           |
|-----|-----|------|---------------------|-----------|-----------|
|     | OCL | RUPL | AP <sub>50:95</sub> | $AP_{50}$ | $AP_{75}$ |
| (1) |     |      | 19.42               | 34.65     | 19.36     |
| (2) |     |      | 18.95               | 33.82     | 19.07     |
| (3) |     |      | 18.34               | 35.21     | 17.16     |
| (4) |     |      | 18.05               | 34.45     | 17.09     |



| Method                           | AP <sub>50:95</sub> |  |
|----------------------------------|---------------------|--|
| Box jittering [4]                | 18.15               |  |
| Predicted IoU [5]                | 18.85               |  |
| Aleatoric uncertainty [3] (Ours) | 18.95               |  |

| Method      | AP <sub>50:95</sub> |
|-------------|---------------------|
| w/o CL      | 18.05               |
| Self-sup CL | 18.24               |
| OCL (Ours)  | 18.34               |
|             |                     |

## 4. Conclusion

- Propose a two-step pseudo-label filtering for SSOD
- Deal with both <u>classification</u> and <u>regression</u> heads
- OCL enhances <u>discriminativeness of classification score</u>
- RUPL learns regression uncertainty to measure the localization quality
- Achieve remarkable <u>performance gain</u> against our baseline and show <u>competitive results</u> compared to other SOTA

#### References

[1] A.Tarvainen, et al. Mean teachers are better role models: Weight averaged consistency targets improve semi-supervised deep learning results. In NIPS, 2017.

[2] Y.Liu, et al. Unbiased teacher for Semi-Supervised Object Detection. In ICLR, 2021 [3] A.Kendall, et al. What uncertainties do we need in bayesian deep learning for computer vision? In NIPS, 2017.

[4] M.Xu, et al. End-to-end semi-supervised object detection with soft teacher. In ICCV, 2021. [5] H.Wang, et al. 3dioumatch: Leveraging iou prediction for semi-supervised 3d object detection. In CVPR, 2021.



