

Comparison of FlyNet-h3 (3 MDW heads) architecture with different width multipliers against state-of-the-art models. FlyNet performs favorably in terms of parameter count against both popular and recently published works. Particularly, our method excels as the model shrinks, towards the extremely low parameter regime.

Why trading parameters with FLOPS?

Operation	Energy (pJ)
8 bit int ADD	0.03
16 bit int ADD	0.05
32 bit int ADD	0.1
16 bit float ADD	0.4
32 bit float ADD	0.9
8 bit MULT	0.2
32 bit MULT	3.1
16 bit float MULT	1.1
32 bit float MULT	3.7
32 bit SRAM READ	5.0
32 bit DRAM READ	640

Energy Consumption of different processor operations

MobileNetV3 backbone

Model	Heads	Top-1 Acc	Top-5 Acc	Params	MAdds
FlyNet 0.5x	1	56.7	79.6	0.80M	24M
FlyNet 0.5x	2	58.2	81.0	0.83M	29M
FlyNet 0.5x	3	59.1	81.4	0.86M	34M
FlyNet 0.5x	4	59.8	81.9	0.89M	39M
FlyNet 0.5x	5	59.9	82.0	0.92M	44M

Variance aware ECA-Net

Dense Light Residuals

ne	Residual	Top-1 Acc	Top-5 Acc	Params	Madds
0.4x	No Residual	54.5	78.0	0.657M	26.5M
0.4x	Default in MobileNetV3	55.5	78.8	0.657M	26.5M
0.4x	3x3 Conv	56.0	79.3	0.673M	30.9M
0.4x	3x3 DW - PW	55.6	78.9	0.659M	27.5M
0.4x	3x3 MDW - Concat	55.9	79.2	0.658M	27.0M

Quantization as regularization

Model	q-levels	Top-1 Acc	Top-5 Acc
FlyNet-h3 1.0x	232	67.2	87.5
FlyNet-h3 1.0x	16	67.3	87.7
FlyNet-h3 1.0x	8	67.4	87.8
FlyNet-h3 1.0x	6	67.1	87.4
FlyNet-h3 1.0x	4	66.1	87.1

Experiments

COCO Object Detection

Backbone	DET Framework	Params	MAdds	
FlyNet-h3 0.4x		0.14M	26M	
FlyNet-h3 0.5x		0.19M	34M	
MicroNet-M2		0.58M	12M	
FlyNet-h3 0.6x	RCNN	0.24M	46M	
MobileNetV3 1.0x		0.89M	56M	
MicroNet-M3		0.69M	21M	
FlyNet-h3 0.8x		0.41M	86M	
FlyNet-h3 0.4x		0.14M	26M	
MicroNet-M2		0.58M	12M	
FlyNet-h3 0.5x		0.19M	34M	
MobileNetV3 1.0x	RetinaNet	0.89M	56M	
FlyNet-h3 0.6x		0.24M	46M	
MicroNet-M3		0.69M	21M	
FlyNet-h3 0.8x		0.41M	86M	

ImageNet Classification

Model	Top-1 Acc	Top-5 Acc	Params	MAdds
MobileNetV3 0.15x[37]	33.7	57.2	1.0M	4M
MicroNet-M0 [37]	46.6	70.6	1.0M	4M
FlyNet-h3 0.4x	55.9	79.2	0.65M	26M
MobileNetV3 0.2x[37]	41.1	65.2	1.2M	6M
MicroNet-M1#	49.4	72.9	1.2M	5M
MicroNet-M1	51.4	74.5	1.8M	6M
EfficientNet-B [56]	56.7	79.8	1.3M	24M
FlyNet-h3 0.5x	59.1	81.3	0.86M	34M
MobileNetV3 0.35x+BFT [59]	55.2	-	1.4M	15M
MobileNetV3 0.5x [24]	58.0	-	1.6M	21M
MicroNet-M2#	58.2	80.1	1.4M	11M
MicroNet-M2	59.4	80.9	2.4M	12M
TinyNet-E [19]	59.9	81.8	2.0M	24M
ShuffleNetV2 0.5x [42]	60.3	-	1.4M	41M
FlyNet-h3 0.6x	61.5	83.4	1M	46M
ShuffleNetV2 0.5x+BFT [59]	61.3	-	1.4M	41M
MicroNet-M3#	61.3	82.9	1.6M	20M
FlyNet-h3 0.7x	63.3	84.5	1.3M	54M
MicroNet-M3	62.5	83.1	2.6M	21M
Mobile-Former-26M [5]	64.0	-	3.2M	26M
EtinyNet [66]	65.5	86.2	0.98M	117 M
FlyNet-h3 0.8x	65.7	86.2	1.6M	66M

We developed a series of simple but effective architectural modifications that can be integrated into any neural architecture to provide accuracy boosts at very little overhead. Particularly, our contributions are aimed at compressed networks in the extremely low parameter regime (sub 1M).

