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Abstract

When performing feature-based 3D object registration, one may expect to find a
unique point corresponding to the right transformation in Hough space for each object in-
stance. However, we observed that description ambiguities of the objects or scenes create
a structured pattern in the Hough space of transformations during the matching process.
We argue that this pattern can be viewed as a global descriptor, as opposed to the local
descriptors or features whose matching resulted in the pattern. Thus, we propose to shift
the focus from finding better local descriptors to better using the Hough-space pattern.
This paper introduces a methodology to compute, analyze and match said patterns in or-
der to improve the quality of 3D pose estimation. We detail a whole framework, termed
HSPA, to first generate what we call the Hough space canonical invariance pattern for
any given object to register and second, take this pattern into account when assembling
and pruning pose hypotheses generated by a registration algorithm. We show the benefits
of this technique on object registration as well as 3D scene registration benchmarks.

1 Introduction
Rigid object localization aims at finding a six degree of freedom (6DoF) transformation from
a rigid object in the scene to the same object in a reference configuration. Typically, the scene
is a point cloud, RGB or RGB-D image captured by a sensor and the reference is a CAD
model or a point cloud obtained by fusing multiple sensor acquisitions with varying point of
view. There are a large number of localization approaches: template-based approaches such
as [20, 24], whole-image based processing using neural networks such as [40] or [36] and
many descriptor-based approaches, reviewed in [16]. However, all these approaches even-
tually converge to a set of pose hypotheses: 6DoF transformations with a confidence score.
The space of the degrees of freedom of transformations is called generalized Hough space.
In the ideal case, for objects without any symmetry, there is a unique rigid transformation
from any given scene to a given reference, resulting in theory in a single point in Hough
space corresponding to the object’s localization.
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Figure 1: Canonical invariance patterns and scene-to-model registrations for objects of the
ITODD [11] dataset. a) objects with invariance and almost-invariance axes. b) rotation and
c) translation parts of the Hough space. d) registrations obtained by the proposed method,
with confidence scores from red to green. Even when an object has no apparent symmetry
(pump object, right), some parts may still exhibit invariances.

In practice, transformation hypotheses are noisy, resulting in multiple points in Hough
space forming a cluster around the correct transformation. This is accounted for in Hough-
space pose grouping approaches [15, 16, 27, 28, 29, 30, 42, 47]. What is not accounted for,
however, is the fact that objects with global symmetries such as planes, cylinders, spheres or
gears result in multiple and possibly disjoint clusters in Hough space. More generally, when
objects have parts that resemble each other relatively to the descriptor used1 (or feature
vector, template, etc.), which we call invariances, structured patterns can be observed in
Hough space (see Figure 1). We call these invariance patterns because they arise due to
the description of the object being locally or globally invariant. In other words, there exist
transformations, which, when applied to the object, leave a subset of its descriptors invariant.
Invariance patterns are implicitly considered detrimental to localization in state of the art
approaches. On the contrary, in this paper, we develop a methodology to exploit them.
Our contributions are as follows: (i) we build a global Hough-space descriptor called the
canonical invariance pattern. (ii) We propose a Hough-space pattern matching algorithm for
3D pose estimation. (iii) We propose analgorithm to find and exploit symmetry-breaking
details that we call “disambiguation”. (iv) We propose a local descriptor to supply Hough-
space pose hypotheses with competitive computation and matching times.

1The limit between “same” and “different” descriptors or "symmetrical" and "non-symmetrical" objects is often
a question of level of detail of the description.

Citation
Citation
{{Drost}, {Ulrich}, {Bergmann}, {Härtinger}, and {Steger}} 2017

Citation
Citation
{Guo, Bennamoun, Sohel, Wan, and Lu} 2013{}

Citation
Citation
{Guo, Bennamoun, Sohel, Lu, and Wan} 2014

Citation
Citation
{Khoshelham} 2007

Citation
Citation
{Li, Bai, and Hager} 2018

Citation
Citation
{Manhardt, Arroyo, Rupprecht, Busam, Birdal, Navab, and Tombari} 2019

Citation
Citation
{Mian, Bennamoun, and Owens} 2010

Citation
Citation
{Tombari and Stefano} 2010

Citation
Citation
{Zhong} 2009



MAYRAN DE CHAMISSO ET AL.: HSPA: AMBIGUITIES FOR 3D POSE ESTIMATION 3

2 Related Work

Symmetries and Hough space in 3D geometry Mitra, Pauly et al. [32, 33, 37] detect
pairs of points symmetric along a line in Hough space and perform clustering in order to
find global symmetries. This allows them to symmetrize real-world objects (see Figure 15
of [33]) as well as, for instance, edit geometry while preserving a symmetry property. Also,
by matching two point clouds representing the same object during a motion, they obtain one
cluster per rigid body which allows easy segmentation thereof. All analyses are based on
clustering sets of Hough points obtained by matching invariant zones. One of the key differ-
ences with our work is that Mitra et al. do not consider votes for the pose of an object, but
for a symmetry axis, which prevents the use of an invariance pattern for 3D pose estimation.

Symmetries and Hough space for 3D pose estimation The methods addressing symme-
try issues for 3D pose estimation can be categorized in two families. The first category
assumes information on the set of object symmetries to improve scoring of poses. [8, 9] re-
move poses that are symmetries of each other from Hough space. A similar strategy is used
in [36]. [1] uses symmetries to reduce the Hough space used for pose clustering by only
keeping one instance of each symmetrical part of the original object. Finally, [39] introduces
a pipeline to handle symmetrical or quasi-symmetrical objects whose aspect is the same from
multiple points of view. By modifying the loss function driving a neural network to predict
symmetry-invariant data, the average recall in an object localization task is improved and the
learning time is reduced. Global symmetries are handled in a binary way (symmetrical/not
symmetrical pose), ignoring objects with local symmetries (only symmetrical parts). Fine
localization of symmetry-breaking details (foolproofing, holes, . . . ) is not handled in [39].

The second category is approaches implicitly robust to symmetries to some extent. For
instance, [22] splits objects into fragments. Fragment matches and object labels are estimated
separately, so that a single object label can be predicted even in the case of symmetries. The
symmetries themselves are not considered during inference. During learning, symmetries are
not taken into account either, with the hypothesis that, over the whole dataset, all symmetries
will be represented. It is not clear how this approach is impacted by local symmetries in an
object. However, this method uses the implicit assumption that some of the fragments are
symmetry-disambiguating, so that matching them will result in an ambiguous pose. In the
same category, [28] finds poses representing the same model but with a different symmetry
by using an ICP score (average of closest-point distances) to compare poses, based on the
fact that the geometry is invariant by any of its symmetries. This process is computationally
expensive (at least n logn per pose pair). However, one can naturally expect the ICP score to
handle local invariances to some extent.

Note that none of these approaches provides a way to find the set of symmetries. In this
paper, we propose to build this set of symmetries in the form of our Invariance Hough Space
Pattern as shown in Figure 1.

Feature-based 3D pose estimation In order to better understand our method, we give a
quick overview of feature-based 3D pose estimation. One way to tackle the problem is end-
to-end learning [2, 26] or [13] with RGB-D input. However, to the best of our knowledge,
there is no trivial way to tackle the symmetry issues except by representing all instances of
the symmetries in the input dataset. The problem seems to be ill-posed as noted in [39].
For this reason, we focus on feature-based approaches which can be summarized in three

Citation
Citation
{Mitra, Guibas, and Pauly} 2006

Citation
Citation
{Mitra, Pauly, Wand, and Ceylan} 2013

Citation
Citation
{Pauly, Mitra, Wallner, Pottmann, and Guibas} 2008

Citation
Citation
{Mitra, Pauly, Wand, and Ceylan} 2013

Citation
Citation
{Brégier, Devernay, Leyrit, and Crowley} 2017

Citation
Citation
{Brégier, Devernay, Leyrit, and Crowley} 2018

Citation
Citation
{Park, Patten, and Vincze} 2019

Citation
Citation
{Alexandrov, Patten, and Vincze} 2019

Citation
Citation
{Pitteri, Ramamonjisoa, Ilic, and Lepetit} 2019

Citation
Citation
{Pitteri, Ramamonjisoa, Ilic, and Lepetit} 2019

Citation
Citation
{Hodan, Bar{á}th, and Matas} 2020

Citation
Citation
{Li, Bai, and Hager} 2018

Citation
Citation
{Ali, Kahraman, Reis, and Stricker} 2021

Citation
Citation
{Huang, Mei, Zhang, and Abbas} 2021{}

Citation
Citation
{Elprotect unhbox voidb@x protect penalty @M  {}Banani, Gao, and Johnson} 2021

Citation
Citation
{Pitteri, Ramamonjisoa, Ilic, and Lepetit} 2019



4 MAYRAN DE CHAMISSO ET AL.: HSPA: AMBIGUITIES FOR 3D POSE ESTIMATION

classical steps: 1) data preparation (smoothing, normal and sometimes reference frames
calculations), keypoint detection, etc., 2) description and matching, and finally 3) outlier
rejection and pose refinement for robust alignment.

Regarding description, there are traditional/geometrical and learning-based methods. There
are currently two major geometry-based 3D registration pipelines. The first one is based on
descriptors such as SHOT [42] computed on a 3D point cloud in a local reference frame cen-
tered on each keypoint. Each descriptor match generates a unique 6D pose hypothesis. The
second pipeline is based on Point-Pair Features (PPF), as exposed notably in [12]. PPF do not
use reference frames but require both points of each pair to match (2 to 2 matching), which
implies a quadratic sampling of points. The quadratic computation cost is avoided by smart
sampling of computation points [21]. Otherwise, many approaches have taken advantage of
Deep Neural Networks for keypoint detection [3, 4] and feature description [5, 25]. All in all,
state of the art approaches focus on having each pose hypothesis correct up to noise, which
leads to developing more and more complex descriptors (for instance SHOT [43] with 352
dimensions), templates or neural networks to generate hypotheses. Mismatches will happen
even with very complex descriptors, since there will always be objects or parts of objects
invariant under description by the chosen descriptor. Of particular interest is the case of
symmetrical objects such as cylinders, for which the notion of a “correct” pose is undefined
and the symmetry will manifest in any description of the object.

Regarding outlier rejection, existing methods are either RANSAC [22, 35] or Hough
based [12, 16, 17, 27, 28, 29, 30, 31, 42, 47]. Hough based approaches mainly differ by the
number of dimensions considered: 3 (translations or rotations only), 6 (both) or 7 (with a
scale factor) and by the clustering method (voxel-based or sparse). A comprehensive review
of traditional 3D outlier rejection is proposed by [45]. Recently, some deep-learning based
methods for outlier rejection have been proposed [6, 10].

3 Our Hough Space Pattern Analysis (HSPA) approach

3.1 Standard 3D registration pipeline
In order to perform invariance analysis in Hough space, we first have to populate said space
with pose hypotheses. In this paper, we are not interested in how pose hypotheses are gen-
erated, so we choose a classical descriptor-based pipeline to simplify explanations. Such
pipelines are reviewed in [16]. The only requirement in order to perform invariance analysis
in Hough space is to generate multiple pose hypotheses. Instead of having a very disam-
biguating descriptor, we keep description simple and recover the missing information from
HSPA. We use a simple geometrical 6-dimension descriptor called Hexagon (illustration
as supplementary material). From a point cloud with normals and BOARD [38] reference
frames, the descriptor is computed at each point (no keypoint extraction required) as the six
point-to-point distances from the vertices of a fixed-size hexagon in the tangent plane (ori-
ented using to the x-axis of the reference frame) to the object’s surface. Normal orientation
(inwards/outwards) gives each of the six distances a sign. Descriptor matching generates
correspondences, which along with local referentials create pose hypotheses.

We represent poses in 6D Hough space by the translation components and an angle-axis
representation of rotations (angle times unit rotation axis θ .⃗r/||⃗r||). This representation is
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optimally compact (3 parameters for rotations) and the cyclicity of the angular coordinate is
much easier to handle than with Euler angles (as used for instance in [32, 33, 37]). In Hough
space, the cyclicity comes down to replicating points at (θ −2π).⃗r/||⃗r|| whenever necessary.

We perform an agglomerative clustering in 6D Hough space to create robust pose hy-
potheses from non-robust input hypotheses. Agglomeration is performed by doing fixed ra-
dius searches in Hough space around each hypothesis, ignoring points with less than a fixed
number of neighbors (noise filtering) and propagating clusters to the remaining neighbors.
For each cluster, a 6-component ponderated average is accumulated together with a cluster
weight, as the sum of input pose weights in the cluster (input pose weights are obtained for
instance as descriptor similarities and are also used to ponderate the 6-component average).
Extra care is taken to ensure that the ±π seam is handled correctly.

Agglomerative clustering returns clusters of arbitrary shape and size while still eliminat-
ing outliers (compared to k-means [30] for instance). Also, compared to finding the 6D point
with the most neighbors [17], a very small 6D search radius can be used for neighborhood
searches, which saves computation time. It should be noted that this clustering step does not
take object invariances into account. The goal is to reduce the number of points in Hough
space while increasing robustness of the remaining points (as the average of transformations
in each cluster). In practice, keeping only the N = 100 highest-weight clusters is sufficient.

Pose refinement is then performed on the cluster’s average using a simple point-to-point
ICP [7], which we found more robust for mostly planar objects than point-to-plane ICP.

The 3D registration pipeline described in this section performs registration of objects
without invariances or with a low amount of invariances. It works well for these objects
since scene-to-model correspondences produce 6D transforms forming a single small cluster
in Hough space for each object instance.

3.2 Invariance pattern analysis for 3D registration

3.2.1 Overview

Objects with invariances or symmetries cause mutiple clusters to exist in Hough space for
each object instance in the scene.First, we group them into one meta-cluster per object in-
stance using a Hough-space canonical invariance pattern computed and discretized (“beads”
model) offline on the reference object or model. Then, we apply a step called disambiguation
whose goal is to decide between quasi-symmetries (this should be viewed as a second order
registration, refining the first order registration obtained at the previous step). Disambigua-
tion uses a disambiguation map computed offline on the reference object or model. A visual
representation of the process can be found in the supplementary material/Figure 4.

3.2.2 The canonical invariance pattern

Obtaining the canonical invariance pattern. We start by performing a registration of the
model to a version of itself with noise added. Adding noise is necessary to emulate an object
viewed by a sensor and overcome the original discretization of an object represented as a
point cloud or mesh. It prevents all descriptors from only matching with themselves. Self-
registration is performed offline using the the same registration approach as online: optional
keypoints detection, description and matching generate correspondences. Correspondences
yield 6D transformations expressed in Hough space: the canonical invariance pattern.
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Obtaining the discretized bead model. The set of correspondences in Hough space is
discretized through fixed radius clustering. We call the centers of the clusters beads. The
role of this discretization is mainly for efficiency for the following online computations.

3.2.3 Grouping clusters belonging to a single object instance

The output of a registration pipeline such as that of section 3.1 is a set of poses, each pose
associated to a set of correspondences (a cluster), a weight and a model identifier, if there
are multiple models to localize at the same time. The first step of invariance analysis is to
group together poses belonging to the same model instance in the scene. For symmetrical
objects, multiple pose hypotheses are valid. For objects with invariances but no symmetries,
only one pose is correct, but some parts of the objects may match some parts of the scene.
For instance, a plane may align on any plane. The process of pose grouping goes as follows
(algorithmic form in supplementary material): for each pose hypothesis Pi with weight wi
aligning model M to the scene, let ∀ j,P′

j = P−1
i Pj. According to the chain rule, P′

j writes
as a transformation from the model to itself, and thus should belong to the canonical invari-
ance pattern. By applying P−1

i , we transform the invariance pattern into what should be the
canonical invariance pattern if Pi is a correct pose hypothesis. Then, for each Pi and each
Pj check if P′

j = P−1
i Pj belongs to the canonical invariance pattern or bead discretization

thereof (6D distance lower than a threshold rs, taking into account the ±π seam). If yes,
add its weight (multiplied by the canonical pattern’s bead’s own weight if using beads) to
Pi’s weight counter (initialized at zero). Then, take the highest score Pi and attach all com-
patible Pj to it, increasing the final score of Pi by that of all the Pj attached. Neutralize Pi
and its attached Pj and restart the process until all poses have been considered. If poses in
Hough space are considered as representatives of an underlying probability distribution, the
above process consists in finding the transformation which, when applied to the current in-
variance pattern, maximizes its correlation with the canonical invariance pattern. Repeating
the process allows identifying multiple object instances, one at a time.

This algorithm has at least an O(n2
hypotheses) complexity (potentially higher depending on

the indexing structures used for nearest neighbor searches within the beads), which is why
we execute it on poses output by our 6D clustering algorithm and not on raw hypotheses
obtained from correspondences. Currently, 6D clustering finds a maximum of 100 pose
hypotheses before invariance analysis but only 16 are kept after invariance analysis.

3.2.4 The disambiguation map

Motivation. The cluster grouping approach described in the previous paragraphs attaches,
let’s say, clusters B and C to cluster A. For quasi-symmetrical objects such as the star (Figure
1), we can’t be sure that A is the best pose hypothesis, because descriptors may not see the
small details that would allow disambiguation. So, B or C may be better options than A.
However, if we have either A, B or C for the star, we know that we could obtain both others
by applying a few 30◦ rotations. More generally, if a pose is almost correct up to a quasi-
symmetry, applying one of the beads belonging to the canonical invariance pattern will bring
it to a correct pose. Which bead to apply is chosen by computing a feature matching score
between model and scene for each bead, possibly ponderated by the disambiguation map.

Offline computation. Once beads are computed, we can obtain a disambiguation map for
a set of local features. Some such features are contours (or 3D edgelets), points with or
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without normals, descriptors, etc. and are typically not the descriptors used to compute the
Hough pattern. Let F = { fi} be the set of features and P= {Pi} be the set of poses, with each
pose being the center of one bead and each feature fi associated with a 3D position r( fi) on
the model. Also, let ωi be the weight (sum of correspondence weights in the bead) of Pi. Let
M be a model. Pi(M) is the model transformed by Pi. For each fi ∈ F on M, let f ′ ji be the
feature on Pj(M) that is closest to fi in terms of position, that is f ′ ji = fargmink||Pj(r( fk))−ri||.

Let w j
i be the matching score of fi and f ′ ji . We define the feature disambiguation weight of

fi as Wi =
∑bead j w j

i ω j
∑bead j ω j

. In other words, the disambiguation weight of a feature is the sum, for
all beads, of how different the feature is from the closest feature in the model transformed
by the bead. The map of disambiguation weights of all features constitutes what we call the
disambiguation map. An example of disambiguation maps using points as features and the
distance to the closest point, ponderated by the absolute cosine of the dot product of normals,
as score, is plotted in the supplementary material as Figure 2.

Online usage Let P be the current pose hypothesis and {Pi} be the set of beads from the
canonical invariance pattern. If the Identity transformation is not in the canonical pattern,
we add it nevertheless to the set of Pi. Let F = { fi} be the set of features of the scene, r( fi)
being the position of fi. Similarly, F ′ = { f ′} is the model’s feature set. We find the closest
model feature to a scene feature for a transformation P.Pj as f ′ ji = fargmink||P.Pj(r( fk))−ri||. Let

w j
i be the matching score of fi and f ′ ji . We can define a pose matching score for P.Pj as

S j = ∑i,||r( fi)−r( f ′ ji )||<τ
w j

i .Wi where Wi is a feature fi’s weight in the disambiguation map and
τ is a fixed distance (say, 2mm) corresponding to the maximum allowed discrepancy between
registered model and scene. The pose P.Pj leading to the highest S j is chosen instead of P.

4 Experiments

Our experiments are organized as follows: first we evaluate our method on an object pose
estimation task, where the goal is to localize up to N instances of a known object (i.e. we
have a 3D model of it) in a scene. For this, we follow the rules of the BOP challenge [23]
and focus on the ITODD dataset [11] which is representative of industrial objects (shiny,
texture-less, etc.). We then evaluate our approach on a scene registration task in a 3D recon-
struction context, which consists in recovering the displacement of a camera between two
views of the same scene. There, we use the 3DMatch dataset [46] and its evaluation metrics.
Experimental details as well as hyperparameters can be found in the supplementary material.

4.1 6DoF object pose estimation

Evaluation metrics. In the BOP Challenge, average recall (AR) is defined as AR=(ARV SD+
ARMSSD+ARMSPD)/3, the mean between Visible Surface Discrepancy, Maximum Symmetry-
Aware Surface Distance and Maximum Symmetry-Aware Projection Distance [23], and is
evaluated through the BOP evaluation server. Note that quasi-symmetrical objects such as
“star” (see Figure 1) are considered completely symmetrical in the challenge, so the metrics
of the BOP challenge can’t completely highlight the benefits of symmetry disambiguation
and the disambiguation map as explained in this paper.
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Method Modality AR Timing
Drost-CVPR10-Edges [12] RGB-D 0.570 6.833s
SurfEmb [18] RGB-D 0.538 4.942s
Koenig-Hybrid-DL-PP combination of [14][19][12] RGB-D 0.483 0.318s
Drost-CVPR10-3D-Edges [12] Depth only 0.462 5.838s
Vidal-Sensors18 [44] Depth only 0.435 3.419s
Drost-CVPR10-3D-Only [12] Depth only 0.316 2.0s
HSPA (whitout invariance analysis) Depth only 0.412 0.535s
HSPA (whith invariance but no disambiguation) Depth only 0.458 0.471s
HSPA (with invariance and disambiguation) Depth only 0.511 0.567s

Table 1: HSPA (with ablation study) and current top competitors on BOP/ITODD. We focus
on the approaches using only the depth modality (bottom rows) but also give the overall best
performers using RGB-D (top rows).

On ITODD (Table 1), the performance of our approach with Hough space clustering but
no invariance analysis is average: third in terms of AR for the depth only modality. The
computation time is more than six times lower than the two better approaches, showing that
hexagon is a decent yet not great descriptor. It is fast to compute and match though, which
justifies its use to quickly populate Hough space with many pose hypotheses.

With invariance analysis but no disambiguation, AR improves to almost that of the cur-
rent best depth-only method (0.458 vs 0.462). Computation time decreases by 12% due to
each cluster fused into another cluster being one less hypothesis to refine and score. With
both invariance analysis and disambiguation, computation time compared to the no invari-
ance analysis case increases by 6%. The average recall gains 0.099 points, placing the ap-
proach first among depth-only methods. When comparing to state of the art approaches that
also use RGB, our approach has noticeably better average recall than Koenig-Hybrid-DL-
PointPairs while being a little slower (their time gain was obtained by segmenting data first
with a convolutional neural network before using Drost-CVPR10-Edges [12], so there is a
speed/accuracy trade-off). Compared with the current best approach in terms of AR [12], our
approach is 12x faster (although not evaluated on the same computer) while loosing 0.059
AR. Table 1 displays the top contenders of the challenge for the depth and RGB-D modal-
ity for this dataset. PPF-CVPR-10 (Implementation of HALCON 19.05) is still the best
performing method on this dataset, outperforming more recent (including 2021) approaches.

4.2 3D Scene registration

The main difference between 3D scene registration and object localization is that in the latter,
the reference model is loaded and processed only once “offline”, while scenes are processed
online. In scene registration, the “object” is a scene. Since the “beads” algorithms was not
designed to be fast, we replace it by the 6D clustering used in the online phase.

Evaluation metrics. Following DGR [10] and PointDSC [6], we use three evaluation met-
rics, namely (1) Registration Recall (RR), the percentage of scenes that were successfully
aligned (rotation error and translation error below some thresholds of the ground truth), (2)
standard rotation error (RE), and (3) standard translation error (TE).
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Method RR (% ↑) RE (◦ ↓) TE (cm ↓) Time (s)
RANSAC-100k 73.57 3.55 10.04 5.24/-
3DRegNet [34] 26.31 3.75 9.60 0.05/-
DGR w/o s.g. [10] 27.04 2.61 7.76 0.56/-
DGR [10] 69.13 3.78 10.80 2.49/-
PointDSC [6] 78.50 2.07 6.57 0.09/-
HSPA (no invariance) 75.64 1.79 7.91 0.008/0.089
HSPA (with invariance) 81.99 1.82 7.19 0.009/0.092

Table 2: Comparison with state of the art methods on the 3DMatch dataset, based partially
on [6]. Only methods based on FPFH [41] have been used for fair comparison with our
naive geometric descriptor hexagon and to avoid overfitting a learnt descriptor to a set of
scenes. Time is only given for grouping and invariances (when present), when using key-
points only/all points. RR, RE and TE are computed in our case with all points.

Figure 2: Registration on 3DMatch/redkitchen. (a), (b): input point clouds; (c), (d): com-
puted disambiguation maps, from green (low disambiguation potential) to red (high disam-
biguation potential); (e) registration. (best viewed in color)

Results. Figure 2 shows a registration between two scenes of “redkitchen” [46]. The floor
is never considered highly disambiguating but most high curvature objects are. For (c), we
think the chairback was not considered highly disambiguating as in (d) because of a discrete
translational invariance which is incomplete due to occlusions in (d). Vertical planes were
not considered disambiguating in (d) because there are many other flat surfaces.

Table 2 compares results obtained with hexagon to results obtained with FPFH, another
“classical” descriptor. Without invariance analysis, our approach performs similarly to the
current best approach PointDSC [6], with similar RR, RE and TE. Invariance analysis allows
our approach to take the lead with 82% RR while preserving RE and TE. Computation times
are to be taken with caution, as only correspondence processing/pruning time (including
invariance analysis when present) is listed to be consistent with [6]. When operating on
all points, our computation times are comparable to [6] which is operating on keypoints
only. When operating on keypoints only, our computation times decrease by about a factor
ten with a 4% RR decrease. Also, hexagon computations and matching are feasible on all
points because of the low dimensionality of the descriptor, and the computation times would
prevent the computation and matching of FPFH on all points in practical situations.
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5 Conclusion and perspectives
In this paper, we proposed a new framework to tackle a common issue with 3D registration,
where some zones in an object have the same descriptor (an invariance). When matching
such descriptors, Hough space patterns appear. These can be precomputed automatically for
any object and matched when trying to find the object in a scene. The Hough pattern thus
becomes a global object descriptor, as opposed to local descriptors. We also exposed algo-
rithms to automatically find which parts of an object break the object’s common symmetry if
any. This disambiguating information can be used in a second pass to refine registration re-
sults, which is necessary for objects with fool-proofing or asymmetric holes for instance. We
demonstrated state of the art performance in object localization and scene registration bench-
marks. Conceptually, our method should be agnostic to the descriptor choices. However, the
practical balance between local description power and hough space invariance pattern needs
an in-depth investigation. We are currently investigating extensions of invariance analysis to
other parametric problems.
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