HSPA: HOUGH SPACE PATTERN ANALYSIS AS AN ANSWER TO LOCAL DESCRIPTION

AMBIGUITIES FOR 3D POSE ESTIMATION

- > Ambiguous description is unavoidable (finite dimension descriptors, occlusions and observation incompleteness, ...)
- > Ambiguous matches form patterns in Hough space, corresponding to transformations aligning part of the model to the scene
- > The Hough patterns can be viewed as a global description.

 \succ It is dual to individual descriptors (better descriptors $\langle - \rangle$ simpler patterns in Hough space)

HSPA - disambiguation

Principle

- Find, for each point of the model, whether transformations of the canonical pattern leave it invariant (OFFLINE)
- Very invariant
- Use this information to navigate within the canonical pattern and disambiguate quasisymmetries (ONLINE)

Output: meta-clusters one per object instance

Mothod namo

rocall Timo (c)

Main takeaways

 M_3°

scene (from sensor(s))

5 instances

- > The missing information due to description ambiguities can be found in Hough space
- > Canonical Hough patterns can be precomputed by comparing an object to itself (with added noise)
- > The object localisation problem then turns into a pattern correlation problem in Hough space
- > It is possible to detect parts that break symmetries (foolproofing marks for instance) to refine localisation

	wellou name	recall	1 me (5)
BOP/ ITODD	Drost-Edges-Halcon19	0.462	5.838
	Vidal-Sensors 2018	0.435	3.419
	Drost-Halcon19	0.316	2.0
	Baseline (local descriptor matches)	0.412	0.535
	HSPA (inv. analysis no disambiguation)	0.458	0.471
	HSPA (full)	0.511	<u>0.567</u>

> Our work describes a pipeline to perform this task. This pipeline is very flexible and notably accomodates deep-learning based description and pose hypothesis generation

 \succ We are expecting further applications of Hough space pattern processing for other parametric problems

Fabrice Mayran de chamisso, **Boris Meden**, Mohamed Tamaazousti **CONTACT** | fabrice.mayran-de-chamisso@cea.fr

