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Abstract

Self-attention is of vital importance in semantic segmentation as it enables model-
ing of long-range context, which translates into improved performance. We argue that
it is equally important to model short-range context, especially to tackle cases where
not only the regions of interest are small and ambiguous, but also when there exists an
imbalance between the semantic classes. To this end, we propose Masked Supervised
Learning (MaskSup), an effective single-stage learning paradigm that models both short-
and long-range context, capturing the contextual relationships between pixels via random
masking. Experimental results demonstrate the competitive performance of MaskSup
against strong baselines in both binary and multi-class segmentation tasks on three stan-
dard benchmark datasets, particularly at handling ambiguous regions and retaining better
segmentation of minority classes with no added inference cost. In addition to segmenting
target regions even when large portions of the input are masked, MaskSup is also generic
and can be easily integrated into a variety of semantic segmentation methods. We also
show that the proposed method is computationally efficient, yielding an improved per-
formance by 10% on the mean intersection-over-union (mIoU) while requiring 3× less
learnable parameters.

1 Introduction
The basic goal of semantic segmentation, or simply segmentation, is to classify each pixel
in an image into one of the pre-defined semantic categories or classes. Its real-world appli-
cations are abound, ranging from medical image analysis [19] to robotics [12]. In medical
imaging, for instance, semantic segmentation can enable physicians to analyze regions of
interests (ROIs) more effectively and efficiently for morphological analysis in cancer treat-
ment, especially in high-resolution images [19], and information retrieval in diagnosis and
surgery [10]. It also extends to visual scene understanding, which disentangles a scene into
objects (e.g. chair), surfaces (e.g. wall) and their relations for robotic object recognition,
navigation, manipulation and interaction [12].

Previous works on semantic segmentation include FCN [15] and U-Net [18], which
are convolutional-based encoder-decoder networks, and have been further extended for im-
proved performance [7, 9, 27, 30, 31]. Some recent works have also demonstrated that mod-
eling long-range context, typically via self-attention mechanism [24], translates into better
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segmentation performance [17, 21, 25, 29]. Despite the effectiveness of self-attentive mod-
els, in this paper we argue that semantic image segmentation is still a challenging problem
due to a number of reasons. First, there is diversity in the size and texture of the ROIs [19].
Second, the same type of ROIs may have different sizes and colors due to the label acqui-
sition protocol. Moreover, there are cases of ambiguity, where the boundary between the
ROI and the background cannot easily be distinguished [2, 10]. Third, in the case of natural
scenes, there are multiple class instances (i.e. objects and surfaces are cluttered) and there
exists imbalance in the semantic classes (e.g. pixels in an image associated with the class
wall are more than the class chair), as well as different lighting conditions, making the
task much more difficult [12]. Examples of these challenging images are shown in Figure 1.

Figure 1: Examples demonstrating challenges in semantic segmentation. Left to right: First
two from GLaS [19] show the variation in appearance; middle two from CVC-ClinicDB [2]
show difference in scale and ambiguous (ROI); last two from NYU Depth V2 [16] show
many classes with heavy imbalance under different lighting conditions.

While powerful, most of these self-attentive methods for semantic segmentation tend to
over-segment ROIs, output noisy and discontinuous predictions, fail to accurately predict
the boundary regions, and poorly segment minority classes. Moreover, they tend to yield
misclassification in multi-class image segmentation due in part to the imbalance that exists
between the semantic classes and the large number of semantic classes. We argue that the
short-range context is equally important to predict small ROIs in medical images, as well
as to accurately segment ROIs and reduce misclassification of minority classes in images of
natural scenes, where the class instances are dense and cluttered.

To address the above limitations, we propose Masked Supervised Learning (MaskSup),
a novel single-stage learning paradigm for semantic segmentation to effectively learn rich
and discriminative representations. MaskSup follows a Siamese style network [3], where the
two branches are identical and share weights. Given an image and its randomly masked ver-
sion, MaskSup models short-range context among neighboring pixels as the context branch
is tasked with predicting the semantic class of masked pixels; thereby leveraging informa-
tion from non-masked pixels. MaskSup also models global or long-range context by a task
similarity constraint, where the similarity of the outputs of the two branches is maximized
in order to better learn the shape of class instances, and we find is especially useful in multi-
class settings. The main contributions of this work can be summarized as follows:

• We propose a learning paradigm that aims to model both short- and long-range context
via random masking for image segmentation without incurring any additional infer-
ence cost.

• We show through experimental results and ablation studies for binary and multi-class
semantic segmentation tasks on three public datasets that MaskSup yields competitive
performance in comparison with single and multi-task learning baselines.

Citation
Citation
{Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz, etprotect unhbox voidb@x protect penalty @M  {}al.} 2018

Citation
Citation
{Valanarasu, Oza, Hacihaliloglu, and Patel} 2021{}

Citation
Citation
{Wang, Zhu, Green, Adam, Yuille, and Chen} 2020{}

Citation
Citation
{Xu, Wu, Zhang, and He} 2021

Citation
Citation
{Sirinukunwattana, Pluim, Chen, Qi, Heng, Guo, Wang, Matuszewski, Bruni, Sanchez, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Bernal, S{á}nchez, Fern{á}ndez-Esparrach, Gil, Rodr{í}guez, and Vilari{ñ}o} 2015

Citation
Citation
{Jha, Smedsrud, Riegler, Halvorsen, Lange, Johansen, and Johansen} 2020

Citation
Citation
{Lai, Bo, Ren, and Fox} 2011

Citation
Citation
{Sirinukunwattana, Pluim, Chen, Qi, Heng, Guo, Wang, Matuszewski, Bruni, Sanchez, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Bernal, S{á}nchez, Fern{á}ndez-Esparrach, Gil, Rodr{í}guez, and Vilari{ñ}o} 2015

Citation
Citation
{Nathanprotect unhbox voidb@x protect penalty @M  {}Silberman and Fergus} 2012

Citation
Citation
{Bromley, Guyon, LeCun, S{ä}ckinger, and Shah} 1993



ZUNAIR, HAMZA: MASKED SUPERVISED LEARNING FOR SEGMENTATION 3

• We demonstrate that MaskSup is robust to large masked corruptions and is computa-
tionally efficient, especially in multi-class segmentation as it improves by over 10%
mIoU while at the same time requires 3× less learnable parameters.

2 Related work

Single-task semantic segmentation. Most state-of-the-art segmentation methods usually
follow an encoder-decoder network structure, where the image is first downsampled by the
encoder subnetwork to a latent representation and then the decoder subnetwork is used to
semantically project the latent representation into a pixel space for precise localization.
Convolutional-based methods include FCN [15] and U-Net [18], and their variants such as
U-Net++[30], ResU-Net [27], ResU-Net++ [9]. Due to the inability of convolutional-based
methods to model long-range context [25], self-attention [24] has become a core building
block in various attention-based methods such as Attention U-Net [17] and Axial Attention
U-Net [25]. To better segment ROIs at boundaries, Selective Feature Aggregation (SFA) [7]
employs area-boundary constraints for polyp segmentation. KiU-Net [22] leverage overcom-
plete convolutional architectures to better segment very small ROIs and distinguish between
ROI and background accurately. More recently, the advent of Vision Transformers [6] has
accelerated research in the direction of transformer-based segmentation methods, which also
build upon self-attention [24]. These transformer-based methods include MedT [21] and
LeViT-UNet [29], which aim to learn long-range context. Our proposed framework dif-
fers from previous work in that it captures both short- and long-range context, while learning
fewer parameters without compromising performance. In fact, masking enables the base seg-
mentation model to learn short-range context among nearby pixels, as the model is tasked
to make a pixel-level prediction for a masked input. This forces the network to leverage
information from the nearby pixels in order to make a prediction.

Multi-task semantic segmentation. Semantic segmentation can be jointly optimized with
other visual scene understanding tasks such as depth estimation and edge detection. Hybrid-
Net A2 [13] is a multi-task learning method, which employs a hybrid convolutional neural
network to jointly tackle the task of image segmentation and depth estimation using a single
network. PAD-Net [28] is a multi-task learning and distillation based network, which jointly
predicts a segmentation, depth, surface normal and edge map by multi-modal data fusion.
This is extended in MTI-Net [23], where interactions between segmentation and depth es-
timation are captured at multiple scales when distilling information based on multi-modal
distillation, in which the tasks mutually benefit from each other. Unlike multi-task learning
methods, our method does not require additional training data, and hence reduces the need
for intense manual labeling of additional data.

3 Proposed Method

We consider the problem of learning an encoder-decoder network fθ that classifies each
pixel of an image I into its semantic class category. The output is an image Mp = fθ (I) of
the same size as the input image. A gland segmentation task, for example, can be thought of
as a binary segmentation problem with two semantic classes: gland and background.
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3.1 Masked Supervised Learning
We present a masked supervised learning framework for effectively learning rich and dis-
criminative representations for semantic segmentation. The proposed MaskSup method fol-
lows a Siamese network [3] style architecture, in which the segmentation branch (SB) and
context branch (CB) are identical and share weights. Given an image I and its randomly
masked version Imasked, we first employ a base segmentation network fθ to output the pre-
dictions Mp and Mpm, respectively, followed by computing an overall loss function. We
use a loss function Lcontext to learn short-range context among neighboring pixels, as this
branch predicts the semantic class of masked pixels by leveraging pixel information from
the non-masked parts in Imasked. We also use a loss term Ltasksim to learn long-range context,
as the similarity of the two outputs Mp and Mpm is maximized, and hence enables us to bet-
ter learn the shape of the semantic classes. Overall, MaskSup enables better representation
learning for semantic segmentation by capturing the contextual relationships between pixels
by predicting a segmentation map for the masked version of the input. MaskSup can tackle
cases where the ROIs are ambiguous at boundary, various scales, shape, appearance and also
for images that have multiple class instances with imbalance, resulting in fewer pixel-level
misclassification of minority classes.

After training, we employ the network fθ to infer a new image I that outputs a prediction
Mp. It is important to mention that at test time the images are not masked, and random
masking is only used during training. The overall framework is illustrated in Figure 2.

shared weights task similarity
   constraint

context branch

segmentation branch

Figure 2: Overview of MaskSup training: joint prediction architecture with context branch
and task similarity constraint for semantic segmentation, where fθ is a base segmentation
network. The segmentation and context branches are identical and share weights.

Context Branch. The goal of the context branch (CB) is to learn short-range context
among nearby pixels as this branch outputs predictions for masked pixels by leveraging
information from the non-masked pixels in Imasked. We take inspiration from the idea of
image inpainting, which refers to the task of filling holes in an image, and is commonly used
in image editing in order to remove image content such as text in videos or objects [14, 20].
We follow the masking procedure in [14] to construct a masked image Imasked from I using
masks of random streaks and holes of arbitrary shapes

Imasked = I�Mholes (1)
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where � denotes element-wise multiplication and Mholes is a binary mask of random streaks
and holes of arbitrary shapes. Intuitively, Imasked has a similar layout as I, but randomly
removes (i.e. pixel values set to 0) roughly over 50% of the pixels in the image.

Given an input image I and the masked image Imasked, we train an encoder-decoder net-
work fθ to predict the output of the segmentation branch Mp and the context branch (CB)
Mpm. Note that fθ is a Siamese network [3] like architecture where the branches are identical
and share weights. In most of our experiments, fθ is either a LeViT-UNet-384 [29] for gland
and polyp segmentation or U-Net++ [30] for indoor scene segmentation. We train fθ by
minimizing the cross-entropy loss of both the segmentation branch and the context branch
for all samples in the training set. The context branch loss is given by

LCB = Lseg(Mp,Mgt)+Lcontext(Mpm,Mgt) (2)

where Lseg and Lcontext are cross-entropy losses between the output and ground truth. It
is worth mentioning that other application-specific loss functions such as the focal Tversky
loss [1] and distance-based losses [5, 11] can also be used.

Task Similarity Constraint. The goal of the task similarity constraint is to model long-
range context by maximizing the similarity between the output from the segmentation branch
and the output from context branch in order to predict the semantic classes of masked pixels;
thereby enabling us to better learn the shape of the class instances (e.g. gland, polyp,
wall etc.). More specifically, we aim to maximize the similarity between the predictions
made by the segmentation branch output Mp and the context branch output Mpm by minimiz-
ing the L2 error Ltasksim = ‖Mp−Mpm‖2. Therefore, the overall loss function of MaskSup
is a weighted sum of the segmentation, context and task similarity loss terms

Ltotal = α1Lseg(Mp,Mgt)+α2Lcontext(Mpm,Mgt)+α3Ltasksim(Mp,Mpm) (3)

where α1, α2 and α3 are nonnegative regularization hyper-parameters, which control the
contribution of each loss term. In our experiments, we empirically set them to 1.

During training, the total loss Ltotal is minimized for several epochs to learn the parame-
ters of fθ using a labeled training set D = {(I1,M1), . . . ,(In,Mn)}, where Mi is the ground
truth segmentation mask of the input image Ii. During testing, the network fθ is used for
semantic segmentation, outputting a segmentation mask prediction Mp given an input image
I. The architecture and the different loss terms of MaskSup are illustrated in Figure 2.

4 Experiments
In this section, we present our experimental setup and results in comparison with competing
single and multi-task learning baselines for semantic segmentation. Details on datasets, im-
plementation, architecture, training, and additional results are included in the supplementary
material. Code is available at: https://github.com/hasibzunair/masksup-segmentation

4.1 Experimental Setup
Datasets. We demonstrate and analyze the performance of our method on Gland Segmen-
tation (GLaS) [19], Kvasir [10] & CVC-ClinicDB [2] and NYUDv2 [16] datasets. While
GLaS and Kvasir & CVC-ClinicDB are for medical image segmentation tasks, NYUDv2
is for indoor scene segmentation tasks. These datasets cover a wide range of challenges in
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semantic segmentation, and they represent both binary and multi-class segmentation. They
also cover both natural and medical image modalities. In medical images, ROIs are usually
very small compared to background. In addition, these datasets have their own challenges
such as variation in appearance, scale, ambiguous ROIs, and many class instances with im-
balance that are densely cluttered.

Baselines. We evaluate the performance of our method against several state-of-the-art
convolutional-based methods including FCN [15], U-Net [18], U-Net++[30], ResU-Net [27],
ResU-Net++ [9], SFA [7], KiU-Net [22] and attention-based methods such as Attention
U-Net [17], Axial Attention U-Net [25]. We also compare with more recent transformer-
based methods MedT [21] and LeViT-UNet [29], and multi-task learning methods Hybrid-
Net A2 [13] and PAD-Net [28] and MTI-Net [23] with HRNet-18 [26] as backbone.

Evaluation Metric. We report results using the Mean Intersection-Over-Union (mIoU),
which is a commonly used metric in semantic segmentation [18, 21, 22, 25, 29]. The values
of mIoU range from 0 to 1, with 1 indicating perfect match between the true and predicted
labels, while 0 indicates a complete mismatch between them.

4.2 Results
Comparison with State-Of-The-Art. We compare the performance of MaskSup against
several state-of-the-art methods and report the results in Table 1. All mIoU scores are aver-
aged over 3 runs. As can be seen, MaskSup consistently outperforms all baselines, achieving
relative improvements of 1.26%, 3.45% and 4.85% over the strongest baseline in terms of
mIoU on GLaS, Kvasir & CVC-ClinicDB and NYUDv2 datasets, respectively.

MaskSup yields significant relative improvements of 18.7% over Axial Attention U-
Net [25] and 2.8% over KiU-Net [22] on GLaS. MaskSup also outperforms transformer-
based methods such as MedT [21] and LeViT-UNets [29] with relative improvements of
1.26% and 3.45% over LeViT-UNet-384 [29] on GLaS and Kvasir & CVC-ClinicDB, re-
spectively. MaskSup performs better than multi-task learning methods PAD-Net [28] and
HybridNet A2 [13] with relative improvements of 18.76% and 14.6%. In addition, MaskSup
outperforms MTI-Net [23] with a relative improvement of 4.85% on NYUDv2. This im-
provement is significant because MTI-Net [23] is a multi-task learning method that jointly
learns four different tasks (i.e. semantic segmentation, depth estimation, edge detection and
surface normal estimation), and hence requires additional annotated data for training. In
contrast, MaskSup only requires images and the pixel level annotations (i.e. segmentation
masks); thereby reducing the need for intense manual labeling of additional data. The results
demonstrate the effectiveness and capability of MaskSup in modeling short- and long-range
context, yielding improved segmentation.

In Table 2, we report the performance comparison results of MaskSup and masked au-
toencoders (MAE) [8]. For MAE, we pre-train for 800 epochs on the images and fine-tune
for 50 epochs on images and labels, while MaskSup only requires a single stage of training
for 200 epochs. MAE uses patch-based masking to predict visual tokens similar to image
inpainting, whereas MaskSup outputs a prediction label and not the full inpainted image.

Qualitative Results. In Figures 3 and 4, we visually compare MaskSup predictions against
the baselines U-Net [18], U-Net++[30] and LeViT-UNets [29] on GLaS, Kvasir & CVC-
ClinicDB and NYUDv2. In the first row of Figure 3, when there is a change in the overall
shape and appearance of the glands, the baseline methods tend to over-segment the regions
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Table 1: Performance comparison of MaskSup and baselines on GLaS, Kvasir & CVC-
ClinicDB and NYUDv2 test sets using mIoU. Boldface numbers indicate the best perfor-
mance, whereas the best baselines are underlined. 4 indicates a multi-task learning method.

Method GLaS, mIoU (↑) CVC-Clinic-DB, mIoU (↑) NYUDv2 (↑)
U-Net [18] 67.41 69.74 33.60
FCN [15] 50.84 - 29.20
U-Net++[30] 69.10 72.90 34.74
HRNet-18 [26] - - 33.18
ResU-Net [27] 65.95 - -
ResU-Net++ [9] - 79.60 -
SFA [7] - 60.70 -
Attention U-Net [17] - 82.70 -
Axial Attention U-Net [25] 63.03 - -
MedT [21] 69.61 - -
KiU-Net [22] 72.78 - -
LeViT-UNet-128 [29] 70.45 - -
LeViT-UNet-192 [29] 71.83 79.16 -
LeViT-UNet-384 [29] 73.88 81.38 -
PAD-Net [28]4 - - 33.10
HybridNet A2 [13]4 - - 34.30
MTI-Net [23]4 - - 37.49

MaskSup (Ours) 76.06 84.02 39.31

Table 2: Performance comparison of MaskSup and MAE. MaskSup is efficient and achieves
better performance.

Method GLaS, mIoU (↑) CVC-Clinic-DB, mIoU (↑) NYUDv2 (↑)
MAE [8] 75.04 82.50 37.42
MaskSup (Ours) 76.06 84.02 39.31

and also produce noisy outputs as they fail to capture the global structure and semantics of
the glands. The second row of Figure 3 shows the case of ambiguous ROIs of polyps, where
the baselines fail to accurately segment the ROI. This is largely attributed to the limited
capability of the learned representations used in the baselines. Interestingly the LeViT-UNets
baseline fail to segment ROIs that are ambiguous at boundaries and vary in size and color,
albeit transformers are quite strong in modeling long-range context [6, 25]. Self-attention can
be regarded as a form of the non-local means [4], and it captures long-range dependencies,
resulting in over-segmentation as shown in Figure 3.

Figure 4 shows that the baselines fail to accurately segment multiple class instances,
output discontinuous predictions and misclassify instances. In the last row of Figure 4,
we can see that the baselines fail to segment the minority class (i.e. pillow). Overall, the
baselines fail to capture context of target regions, resulting in over-segmentation, noisy and
discontinuous predictions as well as misclassification of instances, leading to unsatisfactory
predictions.

By comparison, MaskSup is able to better capture the shape and appearance of instances
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due, in large part, to the context branch, which models short-range context among pixels,
resulting in better representation learning. Moreover, the task similarity constraint leads to
long-range context invariance, enabling MaskSup to better learn the shape of the ROI, which
in turn translates into better output predictions (see Figure 6 for more comparative results).
Overall, learning with the context branch and task similarity constraint helps in cases of
segmenting ambiguous ROIs at varying size and color, and also better segment minority
class instances in cases of multi-class segmentation.

Image U-Net LeViT-UNet-192 LeViT-UNet-384
MaskSup 
 (w/ CB)

MaskSup 
 (w/ CB & TS) Ground Truth

Figure 3: Visual comparison of MaskSup and baselines on the GLaS and Kvasir & CVC-
ClinicDB test sets. MaskSup outputs better predictions in cases of variation in overall ap-
pearance and also very small and ambiguous ROIs.

Image U-Net U-Net++
MaskSup 
 (w/ CB)

MaskSup 
 (w/ CB & TS) Ground Truth

Figure 4: Visual comparison of MaskSup and baselines on the NYU Depth V2 test set.
MaskSup is able to output better predictions for minority classes (e.g. pillows).

4.3 Ablation study

Effectiveness of Context Branch. Figure 5 illustrates the benefit of using the the context
branch on both convolutional and transformer-based methods. Using the the context branch
leads to better modeling of local semantics, as it is tasked to output pixel-wise predictions
for masked regions in the input; thereby leveraging information from neighboring pixels.
We can see that the context branch improves performance of different segmentation methods
across the three datasets. This shows that MaskSup is generic and can be easily integrated
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into existing image segmentation methods. However, it is important to mention that a higher
performance improvement is observed when the architecture is a transformer-based method
due to its key characteristic of modeling long-range context [6, 29].

Effectiveness of Task Similarity Constraint. Figure 5 shows the benefit of using the task
similarity constraint. We observe that the task similarity constraint further improves perfor-
mance of both convolutional and transformer-based methods. The use of the task similarity
constraint results in learning long-range context invariant representations, which help cap-
ture the shape of the ROI. This, in turn, leads to accurate predictions even in cases of differ-
ent shapes and appearance of instances, ambiguous ROIs at different sizes, and imbalance
among multiple class instances in multi-class segmentation.
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U-Net LeViT-UNet-384
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Figure 5: Ablation study of different modules of MaskSup on GLaS, Kvasir & CVC-
ClinicDB and NYU Depth V2 test sets. MaskSup (CB & TS) consistently improves per-
formance of various baselines in both binary and multi-class image segmentation tasks.

Amount of Masking. We performed an ablation study of high- and low-masked pixels
regions during MaskSup training, and the results are reported in Table 3, which shows that
masking the images heavily during training yields better performance of MaskSup across all
three datasets.

Table 3: Ablation study of high- and low-masked pixels regions during MaskSup training.

Masking GLaS, mIoU (↑) CVC-Clinic-DB, mIoU (↑) NYUDv2 (↑)
Low 75.65 81.80 35.33
High 76.06 84.02 39.31

4.4 Analysis
Robustness to Masked Corruptions. Figure 6 shows the robustness of MaskSup to masked
corruptions. As can be seen, MaskSup is able to better predict the ROI even when a large
portion of the image is masked, demonstrating its capability in modeling short- and long-
range context. Using both the context branch and task similarity constraint, MaskSup is able
to learn context invariant representations to better segment and preserve the ROI shape.

Computational Efficiency. In Table 4, we report the number of parameters in millions
(M), as well as mIoU for MaskSup and baseline methods. MaskSup with LeViT-192 net-
work outperforms LeViT-384 [29] on both GLaS and Kvasir & CVC-ClinicDB, while hav-
ing almost 2.6× fewer learnable parameters. MaskSup with U-Net also outperforms U-
Net++ [30], which has almost 3× more learnable parameters on NYUDv2, with a relative
improvement of 10.91% in terms of mIoU. Hence, there is no trade-off between segmenta-
tion accuracy and computational efficiency when using MaskSup in comparison with scaled
versions of the networks.
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Image
Masked
 Image Baseline MaskSup Ground Truth

Figure 6: Visual comparison of predictions made by MaskSup and baseline for images with
masked regions.

Table 4: Comparison of MaskSup and baselines on GLaS, Kvasir & CVC-ClinicDB and
NYUDv2 test sets. MaskSup is computationally efficient and achieves superior performance
with fewer parameters. Boldface numbers indicate better performance.

Method Params (M) (↓) GLaS, mIoU (↑) CVC-Clinic-DB, mIoU (↑) NYUDv2 (↑)

LeViT-384 [29] 51 73.88 81.38 -
MaskSup (LeViT-192) 19(2.6x) 74.44(+0.75) 82.17(+0.97) -

U-Net++ [30] 9 - - 34.74
MaskSup (U-Net) 3(3x) - - 38.54(+10.91)

5 Conclusion

We introduced a new learning paradigm, called Masked Supervised Learning, for semantic
segmentation. By constructing a randomly masked version of the input image, we first make
predictions using a base segmentation network on the two inputs. Then, we maximize the
predictions between the two outputs to model both short- and long-range context. MaskSup
can be easily integrated into any existing semantic segmentation method. We show that
MaskSup achieves better performance than state-of-the-art single and multi-task learning
baselines in both binary and multi-class semantic segmentation tasks, especially in tackling
small, ambiguous regions and minority class instances. In addition, MaskSup is robust to
masked corruptions and is computationally efficient without compromising performance.

For future work, we aim to investigate what type of masking strategies works best in
MaskSup. Since MaskSup is a generic paradigm, we plan to adapt it to other computer
vision tasks such as multi-label recognition, object detection and human pose estimation.
We also plan to explore high-resolution segmentation (e.g. Cityscapes, ADE20K datasets)
using MaskSup.
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