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1 Implementation Details
Data Preprocessing. All images and masks are of size 224×224, and normalized to have
values in [−1,1].

Architecture. In all our experiments for gland and polyp segmentation tasks, LeViT-UNet-
384 [17] is used as the base network in the proposed MaskSup method. For indoor scene
segmentation experiments, we use U-Net++ [19]. We found that using LeViTs [17], which
is a transformer-based method, for indoor scene segmentation yields poor performance com-
pared to convolutional-based methods.

Model Training. MaskSup is trained in a single step, requiring a dataset of images and
segmentation masks. For gland and polyp segmentation, we use Adam optimizer with an
initial learning rate of 0.0001, and we set the batch size to 16. For indoor scene segmentation,
we use SGD optimizer with an initial learning rate of 0.1 with momentum 0.9, and the batch
size is set to 8. Training is performed for 200 epochs and the best weights according to the
mIoU score are retained.

Model Testing. After training, given an image, the model makes pixel-level predictions by
assigning a pixel to a semantic class (i.e. gland, polyp, chair, wall, etc.)

Hardware and software details. Experiments are conducted on a Linux workstation run-
ning 4.8Hz and 64GB RAM and a single NVIDIA RTX 3080 GPU. All algorithms are im-
plemented in Python programming language and PyTorch deep learning framework.

2 Description of Datasets

Datasets. We demonstrate and analyze the performance of our method on binary and multi-
class image segmentation tasks. The summary descriptions of the benchmark datasets used
in our experiments are as follows:
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• GLaS: Gland segmentation from histology images is an important task for morpho-
logical analysis and is an effective tool in cancer diagnosis. This is difficult due to the
diversity in size and texture of glands. The Gland Segmentation (GLaS) [14] dataset
consists of a total of 165 images, where 85 are taken for training and 80 for testing
following [15, 16].

• Kvasir & CVC-ClinicDB: Segmenting polyps from colonoscopy images is a cru-
cial task, as it provides valuable information for diagnosis and surgery. However,
this is challenging because the same types of polyps may have various sizes, colors
and the boundary between polyp and background is usually ambiguous. Following
ResU-Net++ [8], we use the same training and test splits of the Kvasir [9] and CVC-
ClinicDB [2] datasets, which consist of 1000 and 612 images and labels, respectively.

• NYUDv2: Scene understanding aims to parse the scene into objects, surfaces and their
relations with applications in robotics [10]. Scene segmentation is a challenging task,
as objects and surfaces are close together and there also exists an imbalance in the
semantic classes. The NYUDv2 dataset [13] consists of 1499 RGB-D images with 40
segmentation class labels. Following previous work [11, 12], we use 795 images and
labels for training and 654 for testing. It is important to mention that unlike HybridNet
A2 [11], we do not leverage the depth information.

Figure 1: Visual of masks during the training process of MaskSup. Some masks cover more
than 50% of the image.

3 Relation to Self-Supervised Learning via Dual Networks
Self-supervised learning (SSL) is generally used as a pre-training task, typically known as
prextext task, whose goal is to learn the relationship between input and the label, which
can easily be generated from the input itself. A specific class of these SSL methods [1,
4, 5, 6, 7, 18] are based on Siamese networks [3] with the goal of making the two outputs
similar, demonstrating the effectiveness of self-supervised pre-training in target tasks such as
image classification, segmentation and detection [1]. While this idea resembles the proposed
Task Similarity Constraint, the type of output is different in the sense that all these methods
output latent representations (i.e. feature vectors), whereas our MaskSup approach outputs
prediction labels (i.e. segmentation map).

MaskSup differs from these SSL methods in a number of aspects. First, SSL methods
require an initial stage of pre-training, typically using large volumes of unlabeled data and
then a fine-tuning stage for the target task. Our approach is generic and directly applies to
the target task (i.e. image segmentation). Second, these methods operate on two randomly
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augmented samples of the image by applying image rotation, cropping, translation or blur-
ring [1, 5, 18]. In contrast, our approach operates on the image and its masked version.
Third, our approach differs from BYOL [7], SwAV [4] and SimSiam [6] in that these meth-
ods use two independent networks that operate on the two samples. Our method, however,
is a Siamese network with shared weights, where the two networks are identical. Fourth,
MaskSup employs a completely different objective function as SimCLR [5] uses a con-
trastive loss requiring both positive and negative pairs, Barlow Twins [18] and VICReg [1]
use a cross-correlation matrix based loss, while BYOL [7], SwAV [4] and SimSiam [6] use
a cosine similarity loss. Our approach can be regarded as an attempt to unify self-supervised
pre-training and fine-tuning, potentially avoiding discrepancies involved in pre-training and
fine-tuning. In summary, MaskSup aims to unify the concept of self-supervised pretrain-
ing [1, 5, 6, 18] on unlabeled data and fine-tuning on a target task into a single framework.

4 Additional Experimental Results
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Figure 2: Comparison of mean squared error during training. MaskSup achieves the lowest
error across multiple baselines across all three tasks.
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Figure 3: Comparison of mIoU during training. MaskSup achieves the lowest error across
multiple baselines across all three tasks.
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Image Masked Image Baseline MaskSup (Ours) Ground Truth

Figure 4: Visual comparison of predictions of MaskSup against baselines when provided
masked regions as input. MaskSup is robust against masked corrptions.
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Image U-Net U-Net++
MaskSup 
 (w/ CB)

MaskSup 
 (w/ CB & TS) Ground Truth

Figure 5: Visual comparison of MaskSup against baselines on NYUDv2 test set. MaskSup
can better segment minority class instances compared to baselines.
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Image U-Net LeViT-UNet-192 LeViT-UNet-384
MaskSup 
 (w/ CB)

MaskSup 
 (w/ CB & TS) Ground Truth

Figure 6: Visual comparison of MaskSup against baselines on GLaS test set. MaskSup can
better distinguish between ROI and background and output less discontinuous predictions
compared to baselines. MaskSup better tackles ambiguous ROIs and segment very small
regions which baselines tend to miss.
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Image U-Net LeViT-UNet-192 LeViT-UNet-384
MaskSup 
 (w/ CB)

MaskSup 
 (w/ CB & TS) Ground Truth

Figure 7: Visual comparison of MaskSup against baselines on Kvasir & CVC-ClinicDB test
set.
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