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Abstract

Previous virtual try-on methods usually focus on aligning a clothing item with a per-
son, limiting their ability to exploit the complex pose, shape and skin color of the person,
as well as the overall structure of the clothing, which is vital to photo-realistic virtual
try-on. To address this potential weakness, we propose a fill in fabrics (FIFA) model, a
self-supervised conditional generative adversarial network based framework comprised
of a Fabricator and a unified virtual try-on pipeline with a Segmenter, Warper and Fuser.
The Fabricator aims to reconstruct the clothing image when provided with a masked
clothing as input, and learns the overall structure of the clothing by filling in fabrics. A
virtual try-on pipeline is then trained by transferring the learned representations from the
Fabricator to Warper in an effort to warp and refine the target clothing. We also pro-
pose to use a multi-scale structural constraint to enforce global context at multiple scales
while warping the target clothing to better fit the pose and shape of the person. Exten-
sive experiments demonstrate that our FIFA model achieves state-of-the-art results on the
standard VITON dataset for virtual try-on of clothing items, and is shown to be effective
at handling complex poses and retaining the texture and embroidery of the clothing.

1 Introduction
The core objective of image-based virtual try-on is to synthesize a person image with a new
clothing, given the image of the person wearing a different clothing item and the new clothing
item as inputs. Virtual try-on can be broken down into three main sub-tasks, namely image
warping, image compositing, and synthesizing. The latter is very challenging as a synthetic
image must preserve the person’s identity, pose and shape. Also, the occluded body parts
in a clothing item should be correctly synthesized. Moreover, the clothing image should
accurately fit the pose and shape of a person, and the details of the clothing should also be
preserved (i.e. logo, texture and embroidery). Prior work [8, 9, 10, 14, 15, 20, 22, 26, 28, 28,
29] formulates virtual try-on as a supervised learning problem by following two major steps:
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warp the clothing image to fit the human body/shape and fuse the warped clothing with the
person image (i.e. compositing and synthesis). While most of these methods are able to
preserve the identity of a person, there exists a significant gap towards photo-realism as they
tend to fail not only in cases of complex pose and shape of the person, but also in synthesizing
initially occluded body parts (e.g., long sleeve clothing). These methods also fail to preserve
the logo, texture and embroidery of the clothing, as well as the overall shape of the clothing
item. This is largely attributed to the objective functions used in the existing virtual try-
on methods. In fact, many approaches use per-pixel-based, perceptual-based losses [4, 14,
20, 22, 26, 28] and adversarial losses [8, 15], which do not enforce any global context and
semantics necessary to accurately model the human and clothing interaction for compositing
and synthesis. In addition, existing virtual try-on methods [4, 9, 14, 15, 20, 22, 26, 28, 29]
do not provide robustness performance for in-the-wild images. Therefore, it remains an
open question as to how these methods would generalize in-the-wild and it is of paramount
importance to develop methods that can overcome these challenges for highly photo-realistic
virtual try-on.

In order to address the aforementioned limitations, we introduce a self-supervised con-
ditional generative adversarial network model, dubbed Fill In FAbrics (FIFA), which is a
body-aware inpainting framework for image-based virtual try-on. The proposed FIFA frame-
work can synthesize more realistic logo, texture and embroidery of the target clothing and
also tackles well person images with complex poses (e.g., hands occluded). Our approach
consists of a Fabricator and a unified virtual try-on pipeline with a Segmenter, Warper and
Fuser. The Fabricator is used as a form of self-supervised pretraining for Warper. The goal
of the Fabricator is to reconstruct full clothing details, given a partial input, enabling the
model to learn the overall structure of the clothing (i.e. logo, texture, embroidery, full/short
sleeves). To enforce global context at multiple scales for accurate modeling of the human
and clothing interaction for compositing and synthesis, we also propose to use a multi-scale
structural constraint to warp and refine the target clothing. The main contributions of this
paper can be summarized as follows:

• We propose FIFA, a self-supervised conditional generative adversarial network model
for virtual try-on, which can handle the complex pose of a reference person while
preserving the target clothing details.

• We design a masked cloth modeling (MCM) objective to learn the overall structure
of the clothing by predicting the full clothing image, given a masked input, for the
downstream task of better target cloth warping and refinement.

• We show through experimental results and ablation studies that our model achieves
competitive performance in comparison with strong baselines, yielding more realistic
virtual try-on outputs.

2 Related Work
Image-Based Virtual Try-On. The basic objective of image-based virtual try-on is to syn-
thesize a photo-realistic new image by overlaying a desired product image seamlessly onto
the corresponding region of a clothed person. To achieve this goal, various image-based vir-
tual try-on methods based on generative models have been proposed, Conditional Analogy
Generative Adversarial Network (CA-GAN) [15], Virtual Try-On Network (VITON) [9],
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Characteristic-Preserving Virtual Try-On (CP-VTON) network [26], CP-VTON+ [20], Dis-
entangled Cycle-consistency Try-On Network (DCTON) [8], ClothFlow [10], SieveNet [14],
Adaptive Content Generating and Preserving Network (ACGPN) [28], and Cloth Interactive
Transformer (CIT) [22]. While these methods aim to handle complex textures on clothes
and reduce artifacts in the final try-on results, they fail when the visual difference between
the person image and target clothing is significant (e.g., changing long sleeve clothing items
with short sleeve) and also tend to generate distorted arm regions. Furthermore, they fail to
tackle person images with complex poses.

Masked Data Modeling. Masked data modeling has proven effective in natural language
processing and computer vision [5, 18, 19, 25]. Existing masked data modeling approaches
include Context Encoders [21] and Masked Autoencoders (MAE) [12]. Our work differs
from existing methods in two main aspects. First, we make predictions at a pixel level com-
pared to predicting visual tokens [1]. Second, our encoder network is purely convolutional
by design, and is not based on vision transformers, which have been shown to perform well
only when pre-trained on large-scale image datasets such as the JFT-300M dataset [6].

3 Proposed Method
Problem Statement. Image-based virtual try-on aims to synthetically fit a target clothing
onto a reference person while preserving photo-realistic details such as identity, pose and
shape of the person, as well as texture and embroidery of the target clothing. More precisely,
given a reference person image and a clothing image, the goal of our proposed FIFA model
is to synthesize a new image of the same person wearing the target clothing such that the
shape and pose of the person, as well as the details of the clothing are preserved.

3.1 Fill in Fabrics for Virtual Try-On
The proposed FIFA framework consists of a Fabricator and a unified pipeline consisting of
a Segmenter, Warper and Fuser for virtual try-on, as shown in Figure 1. Given a partial
input, we first use the Fabricator to reconstruct the full clothing details and learn the overall
structure of the clothing (i.e. texture, full and half sleeve). This is used as a pretext task for
the Warper. Second, we use Segmenter to predict the mask of the body parts of the reference
person, as well as the masked target clothing regions. Third, we employ Warper to warp the
target clothing image such that it fits the masked clothing region with the aim to capture the
pose and shape of the reference person. Finally, Fuser integrates the outputs from Segmenter
and Warper in order to synthesize the final try-on image.

Fabricator. The Fabricator aims to reconstruct (i.e. fill in fabrics) the full target clothing
image T̂c, given the partial target clothing Tpartial. To this end, the Fabricator learns to rep-
resent the overall structure of the clothing while reconstructing the missing regions (i.e. fill
in correct pixels that make sense in the context). Inspired by the concept of image inpainting
(i.e. the task of filling in holes in an image) using partial convolutions, where the convolution
is masked and re-normalized to be conditioned on only valid pixels [18], we construct Tpartial
from Tc using masks of random streaks and holes of arbitrary shapes. In contrast to image
inpainting, we formulate our objective as a masked cloth modeling problem, which can be
regarded as a form of self-supervised pre-training for the downstream task of virtual try-on.
More specifically, we train an encoder-decoder network Fs to reconstruct the reconstructed
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Figure 1: Schematic layout of the proposed FIFA framework for virtual try-on. Given a
person image I and a clothing image Tc, FIFA synthesizes a try-on image It , where the
person in image I is wearing the target clothing Tc. STN refers to the spatial transformer
network, and ⊕ denotes concatenation.

target clothing T̂c, for a given Tpartial, with the goal to be close to the original target clothing
image Tc (i.e. non-masked clothing) by minimizing the L1 error E = ‖T̂c−Tc‖1.

Segmenter. The goal of the Segmenter is to preserve the body parts of the person during
the synthesis process and also to accurately predict the semantic layout of the target clothing
regions that are necessary for the Warper. Given a reference person image I and its associated
mask M obtained via a publicly available human parser [17], the arms and torso regions are
merged to form a fused map Mfused. A conditional generative adversarial network (CGAN)
Gp is then trained to generate a different person body part mask Mbp, which is conditioned on
Mfused, the 18-keypoint pose heatmap Mpose using out-of-the-box 2D pose estimator [2, 3],
and the target clothing image Tc. To generate the target clothing region Mcloth, another
CGAN Gc is trained by combining Mbp, Mpose and Tc. Hence, in the Segmenter there
are two CGANs in which the discriminator is similar to pix2pixHD [27] and the generator
is a Residual U-Net architecture [30] built on top of the U-Net model [23] with residual
connections [11]. This not only helps retain fine-grained features and predict accurate body
part masks, but also helps generate better try-on results. For a given CGAN (i.e. Gp or Gc),
the adversarial loss is given by

LCGAN = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))], (1)

where G and D are the generator and discriminator, x and y are the input and ground-truth
mask, and z is a noise prior drawn from a standard normal distribution. A CGAN is a
type of GAN that takes advantage of auxiliary information during the training process. To
train a CGAN, we train the generator and discriminator simultaneously to maximize the
performance of both. In simple terms, the goal of the generator is to generate data that
the discriminator classifies as “real”, whereas the objective of the discriminator is to not
be “fooled” by the generator. In other words, the generator and discriminator follow the
two-player min-max game with LCGAN as a function of G and D.

In order to enforce consistency at the pixel-level, we also use the pixel-wise cross-entropy
loss LCE for better semantic segmentation results from the generator. Therefore, the overall
objective is defined as

Lmask = α1LCGAN +α2LCE, (2)
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where α1 and α2 are nonnegative regularization parameters, which control the contribution
of each loss term. Following previous work [28], we set α1 and α2 to 1 and 10, respectively,
in our experiments.

Warper. We employ Warper to naturally deform the target clothing to fit the mask of the
clothing region with respect to the pose of the person, as well as to preserve the texture and
embroidery of the target clothing. While the Adaptive Content Generating and Preserving
Network (ACGPN) [28] for virtual try-on has been shown effective at predicting the semantic
layout of the reference image, it fails, however, to preserve complex poses, logo, texture and
embroidery of the target clothing. This is largely due to the fact that ACGPN employs the
Spatial Transformer Network (STN) [13] with Thin Plate Splines (TPS) [7] and an additional
refinement network U-Net [23]. To address these limitations, we design a masked cloth
modeling objective (MCM) when training the Warper to better preserve logo, texture and
embroidery of the target clothing. More specifically, we transfer the learned representations
in Fs from Fabricator to the refinement network. We also incorporate a multi-scale structural
constraint (MSC) to enforce global context at multiple scales for better warping of the target
clothing according to the pose and shape of the person. Our strategy of training Warper yields
better warped target clothes, which have fine details (i.e. logo, texture and embroidery), and
is especially effective at handling complex poses.

Given the target clothing region Mcloth and target clothing image Tc, the goal of Warper
is to deform Tc such that it fits Mcloth. STN first warps the clothing to Twarped. This is
further refined using Twarped as input to the refinement network with the goal to generate
more details (i.e. logo, texture, embroidery). In a similar vein to [26, 28], composition is
then performed on the output of the refinement network with Mcloth to output the final refined
clothing Trefined. The overall loss for the STN in Warper is an unweighted combination of the
LCGAN loss and a second-order difference constraint [28]. The losses for the refinement net-
work (i.e. pre-trained from the encoder-decoder network Fs) are LCGAN and the perceptual
LVGG loss [16]. This VGG perceptual loss helps ensure the target clothing and its warped
version contain the same semantic content. In addition, we introduce a multi-scale structural
constraint to enforce global context at multiple scales during training. Therefore, the overall
loss function is defined as

Lrefined = β1LCGAN +β2LVGG +β3LMS-SSIM (3)

where β1, β2 and β3 are regularization parameters, which are set to 0.2, 20 and 15, respec-
tively, in our experiments. LMS-SSIM is the multi-scale structural similarity constraint [31].
The Warper benefits from the MCM objective and is able to better preserve the logo, texture
and embroidery of the target clothing. It also benefits from MSC to enforce global context in
order to ensure better warping of the target clothing according to the pose and shape of the
person. This in turn helps produce improved try-on results in Fuser.

Fuser. The Fuser merges the target clothing region, refined clothing image, a composited
body part mask and a body part image with original clothing region masked out in order to
produce the final try-on image. First, the Fuser generates a composited body part mask to
remove or preserve the non-target body parts, which correspond, in most cases, to the arms
of the person. This is then used in the second stage to determine which parts to preserve
or generate when synthesizing the final try-on results. Given the original body part mask
Mobp, the clothing mask Moc from M (i.e. head, arms, torso removed), Mbp and Mcloth from
Segmenter, the composited body part mask Mcomp is given by

Mcomp = ((Mbp�Moc)+Mobp)� (J−Mcloth), (4)
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where � denotes element-wise multiplication and J is an all-ones matrix. As this step takes
an input from Segmenter, it is crucial to produce accurate segmentation maps of Mbp and
Mcloth for better compositing. We also perform compositing on I to get the body part image
with Inc being the original clothing region masked out as follows:

Inc = (I−Moc)� (J−Mcloth). (5)

Hence, given Trefined from Warper, Mcloth from Segmenter, Mcomp and Inc, we train a CGAN
Gm to predict the final try-on image It by minimizing the following loss function

Lfuser = γ1LCGAN + γ2LVGG, (6)

where the hyper-parameters γ1 and γ2 are set to 1 and 10, respectively, in our experiments.

4 Experiments
We conduct extensive experiments to assess the performance of the proposed FIFA frame-
work in comparison with competing baseline models for virtual try-on. Experimental details
and additional results and ablation studies are provided in the supplementary material. Code
is available at: https://github.com/hasibzunair/fifa-tryon

4.1 Experimental Setup
Datasets. We demonstrate and analyze the performance of our model on two virtual try-on
datasets: VITON and DecaWVTON.

• VITON: This dataset consists of 16,253 pairs of front-view women images and front-
view top clothing images split into a training set of 14,221 pairs and a test set of 2,032
pairs. To evaluate the capability of virtual try-on methods in handling different poses
of a person, we divide the VITON test set into three subsets of easy, medium and hard
cases according to the human pose in the reference images. These test subsets are
denoted as VITON-E, VITON-M and VITON-H for easy, medium and hard, respec-
tively [28].

• DecaWVTON: To demonstrate the generalizability of FIFA to in-the-wild images,
we use DecaWVTON, a proprietary dataset comprised of images with complex poses
and clothing not present in the VITON dataset (e.g., turtle neck). Also, the clothing
images are rotated, whereas VITON consists of only front-view clothing images. In
many cases, the head portion is cut out (i.e. either fully or partially), whereas in
VITON the person images consist of full faces.

Baselines. We evaluate the performance of our proposed virtual try-on model against re-
cent state-of-the-art techniques, including CA-GAN [15], VITON [9], CP-VTON [26], CP-
VTON+ [20], SieveNet [14], and segmentation based methods such as VTNFP [29] and
ACGPN [28], as well as flow based methods such as ClothFlow [10]. We also compare
our model against a cycle-consistency based approach DCTON [8] and a transformer based
method CIT [22].

Evaluation Metrics. Following previous work [20, 28], we use the Structural SIMilarity
(SSIM) that captures image level similarity and the Frechet Inception Distance (FID) that
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captures the distributional similarity. Both metrics are commonly used for benchmarking
virtual try-on methods to quantify the visual difference between the generated and real ref-
erence images. Higher scores of SSIM and lower scores of FID indicate higher quality of
the synthesized results. It is important to mention that while computing the SSIM and FID
metrics, the target clothing items are the same as in the reference person as it is not possible
to acquire ground truth images for try-on results.

Implementation Details. All experiments are performed on a Linux workstation running
4.8Hz, 64GB RAM and a single NVIDIA RTX 3080 GPU. Experiments are conducted using
Python programming language and PyTorch deep learning framework. A full training of
FIFA, along with the Fabricator on the VITON dataset, takes roughly seven days. During
training, the target clothing item is the same as the one in the reference person image, as it is
not possible to acquire triplets to compute the loss with respect to the ground truth.

4.2 Qualitative Results

In Figure 2, we visually compare the performance of our proposed model with CP-VTON+
and ACGPN, which are state-of-the-art virtual try-on baselines. Each row shows a person
virtually trying on different clothing items. As can be seen in the first row of Figure 2, when
the pose of the reference person is complex (i.e. standing with arms behind the body), the
baseline models either remove body regions, fail to warp short sleeve shirt, or add unrealistic
body parts. These baselines are also unable to capture the global structure and semantics,
which are needed for warping short sleeve shirts when the reference person is wearing a long
sleeve shirt. This is due, in large part, to the limited capability of the warping strategies used
in these baselines. The second and third rows of Figure 2 show cases where the target cloth-
ing items are of complex texture (i.e. printed patterns, long sleeve, and shirt with logo) and
embroidery (i.e. stripes). In these cases, CP-VTON+ fails to distinguish between the front
and back part of the clothing regions, does not preserve the logo of the target clothes, and
yields blurry results at the clothing and person body boundaries. While ACGPN produces
non-blurry results, it fails to preserve the complex embroidery of the target clothing, and
does not accurately warp long sleeve target clothing items, resulting in incomplete sleeves.
In the last row of Figure 2, we can observe artifacts and mix-up of front and back part of
the clothing in the images generated by the baseline methods. Also, both CP-VTON+ and
ACGPN fail to capture the v-shaped structure of the target clothing, and do not accurately
warp tank tops with very thin straps, resulting in either blurry or distorted clothing struc-
ture. Overall, these baselines fail to preserve the complex pose of the reference person, the
complex texture and embroidery of the target clothing, and also the complex clothing types.

By comparison, our FIFA method is able to warp the target clothing in the case of com-
plex poses, and preserves well the body parts. It benefits from the synergy between the MCM
objective and the MSC constraint, which help preserve the pose of a person, capture the fine
details of the target clothing (i.e. logo and embroideries), as well as the global structure of
the clothing (i.e. front and back part of clothing, v-shaped collar). Moreover, FIFA benefits
from residual blocks (RBs) to better predict the semantic layout of the body parts, resulting
in realistic try-on results. In summary, this helps not only preserve the logo, texture, em-
broidery and the type of target clothing, but also yields an output having less artifacts and
retains clear body parts, achieving more realistic try-on results. We also find that FIFA is
able to better preserves the skin color of the person and accurately synthesizes the person’s
body parts, which were initially occluded. In addition, it can distinguish between the front
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Figure 2: Given a pair of a reference person image and a target clothing image, our FIFA
model successfully synthesizes virtual try-on images. Compared to the baselines, FIFA is
able to better handle complex poses and also retains photo-realistic details such as logo,
texture, embroidery and structure (e.g., collar shape) of the target clothing.

and back part of clothing items.
It is worth pointing out that some examples in Figure 2 seem to have color mismatch

between synthetic clothes and target. We hypothesize that this might be attributed to the
Warper, which in some cases produces blurry target clothing outputs. While using the multi-
scale structural constraint (MSC) in Warper can output fine details of clothing, we argue that
designing perceptually motivated loss functions may further improve the results.

4.3 Quantitative Results
Table 1 shows that FIFA consistently outperforms all baselines, achieving relative improve-
ments of 4.85%, 4.22%, 4.64% and 4.47% over the strongest ACGPN baseline on all (VI-
TON), easy, medium and hard cases in terms of the SSIM metric. FIFA also outperforms
ACGPN with a substantial relative improvement of 19.11% in terms of FID.

Interestingly, our FIFA model yields significant relative improvements of 5.10% and
43.16% over ClothFlow in terms of SSIM and FID, respectively. It is worth pointing out
that ClothFlow operates on streams (i.e. optimal flow maps) to predict the movement of
clothes and is computationally expensive, while our model is a purely image-based virtual
try-on approach operating on image pixels. Our method also outperforms the transformer
based CIT baseline with a relative improvement of 7.13% in terms of SSIM. This better
performance of our approach is significant because transformers are built on self-attention
operations and are quite strong in modeling the global context between the person and target
clothing. In addition, transformers in computer vision tasks perform well only when pre-
trained on a large cohort of images such as the JFT-300M dataset, which is comprised of
18K classes and 303M high-resolution images [6].

4.4 Ablation Study
Effectiveness of Masked Cloth Modeling (MCM). Figure 3 illustrates the benefit of us-
ing the MCM objective in preserving the pose and logo, as well as in accurately warping
the target clothing. As can be seen, MCM is able to preserve the logo of the target clothing,
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Table 1: Performance comparison of FIFA and state-of-the-art methods on the VITON,
VITON-E, VITON-M and VITON-H test sets using SSIM and FID scores. FIFA consis-
tently outperforms the baselines across easy, medium and hard cases. Boldface numbers
indicate the best performance, whereas the best baselines are underlined.

SSIM (↑)
Method VITON VITON-E VITON-M VITON-H FID (↓)

CA-GAN [15] 0.740 - - - 47.34
VITON [9] 0.783 0.787 0.779 0.779 55.71
CP-VTON [26] 0.745 0.753 0.742 0.729 24.43
VTNFP [29] 0.803 0.810 0.801 0.788 -
ClothFlow [10] 0.843 - - - 23.68
CP-VTON+ [20] 0.750 - - - 21.08
SieveNet [14] 0.837 - - - 26.67
ACGPN [28] 0.845 0.854 0.841 0.828 16.64
DCTON [8] 0.830 - - - 14.82
CIT [22] 0.827 - - - -
FIFA (Ours) 0.886 0.890 0.880 0.865 13.46

whereas without MCM the logo is completely lost. MCM also helps in accurately preserv-
ing or synthesizing body parts in complex poses (i.e. body aware), as well as in accurately
warping the target clothing. Notice that without MCM, there is a problem of unnecessar-
ily editing regions of the target clothing (i.e. making half sleeve shirt a full sleeve). This
is largely attributed to the richer learning signal provided by MCM rather than just using
the supervised objective of predicting the warped clothing, which fits the reference person,
enabling our approach to accurately model the interactions between the target clothing and
reference person clothing.

Figure 3: Warped target clothing results, demonstrating the effectiveness of the MCM objec-
tive in Warper. Warper with MCM is capable of handling complex poses (i.e. body-aware)
and preserving the logo and embroidery of the clothing.

Effectiveness of Multi-Scale Structural Constraint (MSC). Figure 4 shows that the use
of per-pixel-based and perceptual-based loss functions [4, 14, 20, 22, 26, 28] is not enough
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to capture the global context and semantics, which are needed for preserving the shape of a
person and also for realistically synthesizing body parts. The per-pixel-based loss function
L1 measures the distance between pixels and does not enforce any global constraint. On the
other hand, the perceptual loss LVGG quantifies the similarity between the reconstructed and
ground-truth images, but only at a latent representation level (i.e. computes the distance of
the features extracted by VGG-19 [24]). Also, it tends to generate artifacts [16], which is in
line with our findings. We show that by adding MSC, our model is able to better tackle these
issues and learns to exploit context at different scales, while the CP-VTON+ and ACGPN
baselines introduce artifacts and do not preserve well the shape of the person.

Figure 4: Try-on results, demonstrating the effectiveness of MSC in Warper. Warper with
MSC helps capture global context of the target clothing and preserves the shape of the person.

4.5 Generalization to In-The-Wild Virtual Try-On
To test the generalizability of virtual try-on models to in-the-wild images, we set up a chal-
lenging task where the results would better reflect the robustness on unseen data. We com-
pare FIFA against the state-of-the-art ACGPN model [28] by training both methods on VI-
TON and testing them on DecaWVTON. Results presented in the supplementary material
demonstrate that FIFA yields substantial improvements over ACGPN in terms of SSIM and
FID, indicating that FIFA is more robust to in-the-wild images for virtual try-on.

5 Conclusion
We introduced a body-aware self-supervised inpainting framework for image-based virtual
try-on with a focus on tackling complex poses, learning the overall structure of clothing and
incorporating global context. Our proposed FIFA model achieves significant improvements
in the synthesized try-on image by not only retaining the logo, texture and embroidery of the
clothing, but also able to better handle the complex poses, indicating that it is body aware,
a crucial feature for photo-realistic virtual try-on. By combining the strengths of mask cloth
modeling, multi-scale structural constraint and residual blocks, FIFA outperforms strong
baselines on the VITON dataset across all, easy, medium and hard cases. In addition, we
set up an evaluation framework for testing robustness of virtual try-on models to in-the-wild
images and found that FIFA outperforms previous state-of-the-art methods by a significant
margin.
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