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Abstract

Partial Domain Adaptation (PDA), which assumes that the label space of the target
domain is a subset of that in the source domain, has attracted much attention in recent
years. Due to the difference in the label space of these two domains, it is hard to directly
align these two domains in PDA. To solve this problem, we propose a Selective Partial
Domain Adaptation (SPDA) method, which selects useful data for the adaptation to the
target domain. Specifically, we firstly design a Maximum of Cosine (MoC) similarity
function customized for PDA to select useful data in the source domain to decrease the
domain discrepancy. In the MoC similarity function, for each target sample, we select the
source sample with the maximal cosine similarity for adaptation. Moreover, a selective
training method is designed to add useful target data into the source domain. In detail,
the selective training method firstly assigns pseudo-labels to target samples with the self-
training strategy and then adds target samples with high confidence in terms of pseudo-
labels to the source domain. Based on these two selection operations, the proposed SPDA
method can select useful data for domain adaptation. Experiments on several datasets
demonstrate the effectiveness of the proposed SPDA method.

1 Introduction
Deep neural networks have achieved great performance on a variety of computer vision
problems [6, 11, 12, 19, 24, 35]. However, the great performance benefits from a large
amount of labeled data, which is not easy to obtain in many real-world applications. Since
it is laborious to manually label sufficient training data for various applications, Domain
Adaptation (DA) [20, 34] is proposed to solve this problem. DA aims to transfer knowledge
learned in a data-abundant source domain to help the learning in a target domain with only a
large amount of unlabeled data.

Most existing DA methods assume that the target domain shares an identical label space
to the source domain but with different data distributions. However, in real-world applica-
tions, it is usually not easy to find such a source domain for a target domain. Hence, Partial
Domain Adaptation (PDA) studies a relaxed setting, where the label space of the target do-
main is a subset of that of the source domain.
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The core problem in both DA and PDA is that there exits a distribution shift across do-
mains, which hinders the direct generalization of the source model to the target domain. In
DA, one solution to this issue is to learn a domain-invariant feature representation which
could be discriminative for classification. To learn such a feature representation, many dis-
tance functions have been adopted in existing DA methods, such as the Maximum Mean
Discrepancies (MMD) [9] used in the Deep Domain Confusion (DDC) [30] and Deep Adap-
tation Network (DAN) [17], the Kullback-Leibler (KL) divergence adopted in the Transfer
Learning with Deep Autoconders (TLDA) [39], the second-order statistics utilized in the
CORrelation ALignment (CORAL) [28, 29], and the Central Moment Discrepancy (CMD)
proposed in [36]. However, due to the difference in the label spaces of the two domains,
all of these distance functions are inapplicable to PDA. If we forcibly utilize these distance
functions to align the source and target domains in PDA, it may lead to negative transfer [2].

Source Target 

Figure 1: Illustration for the MoC similarity.
Since in PDA the label space of the target do-
main is a subset of that of the source domain,
we cannot align these two domains directly.
In the MoC similarity function, for each target
sample, we select the source sample with the
maximal cosine similarity and hope to draw
them closely. After that, the source and target
domains could be well aligned. Best viewed in
color.

To learn under the PDA setting, a pos-
sible way is to select useful source sam-
ples whose labels are highly likely to ap-
pear in the target domain for the adapta-
tion. However, since the target domain
is unlabelled, it is not straightforward to
identify which classes are presented in the
target domain and which source samples
are helpful for the target domain. To
solve those issues, in this paper, we pro-
pose a Selective Partial Domain Adaptation
(SPDA) method. Specifically, we firstly de-
sign a Maximum of Cosine (MoC) similar-
ity function customized for PDA to select
the source sample with the maximal cosine
similarity for each target sample. In this
way, we can select the most useful source
samples for adaptation and ignore irrelevant
source samples which may cause negative
transfer. An illustration of the MoC sim-
ilarity is shown in Fig. 1. Furthermore,
to fully exploit target samples, we adopt a
selective training method in the proposed
SPDA model. In detail, the self-training strategy is first used to assign pseudo-labels to tar-
get samples. Then the target samples with high confidence are selected to add to the source
domain. In this way, the proposed SPDA method not only makes the model generalize better
to the target domain due to the use of the target data with high confidence pseudo-labels but
also maximizes the intra-domain similarity in the target domain since each target sample can
select a target sample, which has been added into the source domain, to maximize their sim-
ilarity based on the proposed MoC similarity. Experiments on several benchmark datasets
demonstrate the effectiveness of the proposed SPDA method. In summary, our contributions
are three-fold as summarized in the following.

• We propose the MoC similarity, which can select useful source samples for adaptation
under the PDA setting even while the target domain is unlabeled.

• Built on the MoC similarity, we propose the selective training method as another selec-
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tion operation in SPDA to choose target samples with high confidence pseudo-labels
and add these data to the source domain to maximize the intra-domain similarity in the
target domain.

• Extensive experiments are conducted on three PDA benchmark datasets, including
Office-31, Office-Home, and VisDA-2017, to show the superiority of the proposed
SPDA method over state-of-the-art DA and PDA methods.

2 Related Work
Partial Domain Adaptation In the PDA scenario, the label space of the target domain
is a subset of that in the source domain. Cao et al. [2] firstly introduce the PDA setting
and propose the Partial Adversarial Domain Adaptation (PADA) method to simultaneously
circumvent negative transfer and promote positive transfer. Then several models are pro-
posed to solve the PDA problem, including the Importance Weighted Adversarial Network
(IWAN) [37] which utilizes a weighting scheme based on adversarial networks, Example
Transfer Network (ETN) [3] which quantifies the transferability of source samples and dis-
covers shared label space, Deep Residual Correction Network (DRCN) [15] which adds a
residual block into the source network along with the task-specific feature layer to effectively
enhance the adaptation, Reinforced Transfer Network (RTNet) [4] which adopts reinforce-
ment learning to automatically select source samples in the shared classes, BA3US [16]
which designs the balanced adversarial alignment and adaptive uncertainty suppression to
conduct uncertainty propagation, Selective Representation Learning for Class-Weight Com-
putation (SRLCWC) [5] which first identifies outlier classes based on the image content in-
formation and then trains a label classifier on the class content from source images, confused
classes, and Domain Consensus Clustering (DCC) [14] which exploits the domain consen-
sus knowledge to discriminate common classes from private classes and then determines
clusters as well as private classes, Implicit Semantic Response Alignment [33] which boosts
the existing partial domain adaptation models by exploring inherent class relationship across
both source and target domains, and Adversarial Reweighting (AR) [10] which adversarially
learns the weights of source domain data to align the source and target domain distributions.
Different from the aforementioned methods, in this paper, we propose the SPDA method to
select useful source samples based on the proposed MoC similarity function.

Self-training The self-training strategy aims at iteratively training the model by using both
labeled data and unlabeled data with assigned pseudo-labels, and it is initially explored in
semi-supervised learning [8, 38]. Recently, some works [13, 18, 23, 27, 40, 41] apply the
self-training strategy to DA. For example, Zou et al. [40] formulate the “domain gap” prob-
lem in DA as a latent variable and solve it via an iterative self-training strategy. Zou et
al. [41] propose a confidence regularized self-training (CRST) framework to treat pseudo-
labels as continuous latent variables that are jointly optimized with model parameters. Mei et
al. [18] develop a pseudo-label generation strategy with an instance-adaptive selector to ef-
fectively improve the quality of pseudo-labels and propose an instance adaptive self-training
framework for DA on the semantic segmentation task. Kumar et al. [13] use the self-training
strategy to solve the gradual domain adaptation problem. Phoo and Hariharan [23] self-train
on unlabeled target samples to tackle the extreme domain gap in DA. However, all of the
above methods are proposed for DA, where the target and source domains share an identical
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label space. In this paper, we consider the PDA setting, where the label space of the tar-
get domain belongs to that of the source domain. Moreover, the use of target samples and
pseudo-labels in the proposed method is different from the aforementioned existing works.
Specifically, we not only use the pseudo-labels of target samples to compute the classifi-
cation loss, but also use them to compute the MoC loss by the proposed selective training
method, which can reduce both inter-domain and intra-domain gaps.

3 SPDA
In this section, we introduce the proposed SPDA method under the PDA setting.

In the PDA setting, we have a labeled source dataset Ds = {(xi
s,y

i
s)}

ns
i=1 and an unlabeled

target dataset Dt = {xi
t}

nt
i=1, where ns and nt denote the number of samples in the source

and target domains, respectively. These two domains have different data distributions, i.e.,
ps(xs) 6= pt(xt), due to the domain shift. Notably, in PDA, the target label space is a subset
of the source label space, i.e., Yt ⊂ Ys. The goal is to train a model that can utilize useful
knowledge in the source domain Ds to help the learning in the target domain Dt .
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Figure 2: Illustration of the proposed SPDA method. The left figure shows the whole ar-
chitecture of the SPDA model, whose objective function consists of two parts, including
the classification loss on the source data as well as the selected target data with high con-
fidence pseudo-labels and the negative MoC similarity between augmented source samples
and target samples. Note that the source and target networks share the same architecture and
parameters. The right figure shows the selective module used for the target data, where only
target samples with high confidence pseudo-labels will be added to the source domain.

As shown in Fig. 2, the proposed SPDA method consists of two selection operations.
The first selection operation is to design the MoC similarity to select useful source samples
for adaptation and the second one is to utilize the selective training method to select target
samples with high confidence pseudo-labels and add them to the source domain. In the
following, we first introduce these two parts and then present the overall objective function
of the SPDA method.

3.1 MoC Similarity
The main problem of PDA is the difference between label spaces of the two domains. How-
ever, existing distance functions adopted in DA such as MMD, KL divergence, CORAL, and
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CMD do not take this problem into consideration, causing to suffer from the negative transfer
with high probability due to irrelevant source samples. To provide a remedy to this problem,
we design the MoC similarity function customized for PDA to measure the similarity be-
tween the source and target domains. Specifically, for each sample in the target domain, we
select the source sample with the maximal cosine similarity to define the similarity between
the two domains. The MoC similarity function MoC(XS,XT ) is formulated as

MoC(XS,XT ) =
1
nt

nt

∑
j=1

max
i∈[ns]

(G(xi
s))
>G(x j

t )

‖G(xi
s)‖2‖G(x j

t )‖2
, (1)

where XS and XT denote the source and target datasets, respectively, [n] = {1,2, · · · ,n} de-
notes the set of positive integers up to an integer n, ‖ · ‖2 denotes the L2 norm, and G(·)
denotes the feature extraction network used in SPDA. Note that the MoC similarity is com-
puted based on the hidden feature representation but not the original data representation.
The MoC similarity measures the domain similarity based on each target sample and the
most similar source sample in terms of the cosine similarity. When maximizing the MoC
similarity, such a pair of samples from the two domains will become more similar and the
two domains could be well aligned. Note that in the MoC strategy, we only select samples
with maximum cosine similarities, which implies that these two samples are very likely to
be related (i.e., they either belong to the same class or have similar semantic representa-
tions), which can guarantee that the selected samples are useful for aligning two domains.
Moreover, in the implementation, the MoC criterion is calculated based on each mini-batch
including source and target samples and its complexity is proportional to the product between
numbers of source and target samples in a mini-batch, which is training efficient.

The value range of the MoC similarity is in [−1,1]. The larger the MoC similarity, the
more similar the two domains. When the MoC similarity equals the maximum 1, for each
target sample, we can find at least one source sample that is almost identical to the target
sample, which means that the distribution of the target domain is close to some part of the
source distribution. When the MoC similarity equals the minimum −1, the target domain is
dissimilar to the source domain. In this case, the best choice is not to use the source data for
adaptation.

3.2 Selective Training
In the following, we introduce the proposed selective training method adopted in the pro-
posed SPDA method.

Specifically, we first generate pseudo-labels for target samples by the self-training strat-
egy in each training epoch. The process of generating pseudo-labels can be formulated as

{ŷt , pt}= max(F(G(xt))), (2)

where F(·) denotes the classification network, and the max operation will return the index
and value of the maximal value, which means that ŷt represents the pseudo-label and pt
represents the confidence. Then we select those target samples with high confidence pseudo-
labels as

X̂T = {x j
t | p j

t > θ ,∀ j ∈ [nt ]}, (3)

where θ denotes a threshold to determine whether a pseudo-label is of high confidence. Then
those selected target samples are considered to be similar to the source domain and added to
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the source domain. We denote the augmented source domain by

X̃S = {XS, X̂T}. (4)

Such augmented source domain can not only provide more labeled data to learn a more
accurate learner for the target domain but also increase the intra-domain similarity in the
target domain as shown in the next section. Note that the pseudo-labels of target samples,
selected target data X̂T , and augmented source data X̂S are updated at each training epoch.

3.3 Overall Objective Function
By combining these two selection operations, the overall objective function of the proposed
SPDA method is formulated as

min
w
LC(X̃S,{ys, ŷt})−λMoC(X̃S,XT ), (5)

where w denotes parameters of the whole network that consists of G and F , LC(X̃S,{ys, ŷt})
denotes the classification loss on the labeled source samples XS with their ground truth labels
ys and the selected target samples X̂T with their pseudo-labels ŷt , and λ is a hyperparameter
to balance the two terms in problem (5). Since a large MoC similarity indicates a similar
pair of the source and target domains, we aim to maximize MoC(X̃S,XT ) or equivalently
minimize the negative of MoC(X̃S,XT ) in problem (5). The first term in problem (5) (i.e.,
LC(X̃S,{ys, ŷt})) based on the cross-entropy loss consists of two parts as

LC(X̃S,{ys, ŷt}) = LC(XS,ys)+LC(X̂T , ŷt), (6)

where LC(XS,ys), LC(X̂T , ŷt) are defined as

LC(XS,ys) =−
1

ns + n̂t

ns

∑
i=1

(zi
s)

T logF(G(xi
s)),

LC(X̂T , ŷt) =−
1

ns + n̂t

n̂t

∑
j=1

(z j
t )

T logF(G(x̂ j
t )),

where n̂t denotes the number of samples in X̂T , x̂ j
t denotes the jth sample in X̂T , zi

s denotes
the one-hot label vector corresponding to xi

s, z j
t is the one-hot label vector for x̂ j

t .
According to problem (5), the augmented source domain X̃S contributes to both terms.

Firstly, the selected target samples in X̃S can be helpful to learn the classifier as it brings addi-
tional supervision information as shown in Eq. (6). Secondly, it is easy to write MoC(X̃S,XT )
as

MoC(X̃S,XT ) =
1
nt

nt

∑
j=1

max
(

max
i∈[ns]

cos(x j
t ,x

i
s),max

k∈[n̂t ]
cos(x j

t , x̂
k
t )

)
, (7)

where cos(·, ·) denotes the cosine similarity between two samples as defined in Eq. (1). Com-
pared with MoC(XS,XT ), MoC(X̃S,XT ) may use the cosine similarity between a target sam-
ple and a target sample in X̂T to define the domain similarity. Thus maximizing MoC(X̃S,XT )
may maximize the intra-domain similarity for the target domain.

Based on the above analysis, both the MoC similarity and the selective training method
are important blocks for the SPDA method, which will be verified in Section 4.3. The MoC
similarity can measure the domain similarity and help align two domains, while the selective
training method provides more labeled data from the target domain.
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4 Experiments

In this section, we conduct experiments on three benchmark datasets (i.e., Office-31 [26],
Office-Home [32], and VisDA-2017 [22]) to evaluate the proposed SPDA method. Due to
page limit, the detailed introduction of benchmark datasets, baseline methods, experimen-
tal setup, and some experimental results are put in the appendix. The code is available at
https://github.com/gpx333/SPDA.

4.1 Why Use the Cosine Similarity?

Before presenting experimental results and analyses, we first explain why the cosine similar-
ity in the MoC similarity is suitable.

To see the effect of the cosine similarity used in the MoC similarity, we compare with
different popular distance functions, including the Euclidean Distance (ED), Manhattan Dis-
tance (MD), and Chebyshev Distance (CD). Specifically, we replace the cosine similarity by
those distance functions in Eq. (1) and by taking the Euclidean distance as an example, the
corresponding distance function is formulated as

ED(XS,XT ) =
1
nt

nt

∑
j=1

min
i∈[ns]
‖G(xi

s)−G(x j
t )‖2. (8)

As we need to minimize those distance functions to make two domains aligned, the objective
function for the Euclidean distance is formulated as

min
w
LC(X̃S,{ys, ŷt})+λED(X̃S,XT ),

which differs from problem (5) in the second term.

Method Ar→Cl Pr→Cl Rw→Cl Avg

SPDA-ED 37.37 34.57 41.79 37.91
SPDA-MD 35.16 35.40 34.03 34.86
SPDA-CD 46.81 39.40 43.22 43.14
SPDA-MoC 64.24 58.91 67.41 63.52

Table 1: Accuracy (%) on three transfer tasks
of Office-Home with different distance func-
tions and the proposed MoC similarity.

Then we conduct experiments on three
hard transfer tasks (i.e., Ar→Cl, Pr→Cl,
and Rw→Cl), whose hardness is measured
by the transfer performance, on the Office-
Home dataset to compare the MoC similar-
ity with those distance functions. Accord-
ing to the results shown in Table 1, we can
see that all the distance functions (i.e., ED,
MD, and CD) perform inferior to the MoC
similarity. One possible reason is that in a
high-dimensional space, distance functions
cannot measure the difference of two hidden representations accurately. Hence, we adopt
the cosine similarity in the proposed SPDA method.

4.2 Results

According to the results on the Office-31, Office-Home, and VisDA-2017 datasets as shown
in Tables 2, 3, and 4, we can see that the proposed SPDA method performs better or at least
comparable to all the baseline methods on average and on all the tasks, which demonstrates
the effectiveness of the SPDA method.
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Method A→W D→W W→D A→D D→A W→A Avg

ResNet-50 [11] 75.59±1.09 96.27±0.85 98.09±0.74 83.44±1.12 83.92±0.95 84.97±0.86 87.05
DAN [17] 59.32±0.49 73.90±0.38 90.45±0.36 61.78±0.56 74.95±0.67 67.64±0.29 71.34
DANN [7] 73.56±0.15 96.27±0.26 98.73±0.20 81.53±0.23 82.78±0.18 86.12±0.15 86.50
ADDA [31] 75.67±0.17 95.38±0.23 99.85±0.12 83.41±0.17 83.62±0.14 84.25±0.13 87.03

PADA [2] 86.54±0.31 99.32±0.45 100.0±0.00 82.17±0.37 92.69±0.29 95.41±0.33 92.69
IWAN [37] 89.15±0.37 99.32±0.32 99.36±0.24 90.45±0.36 95.62±0.29 94.26±0.25 94.69
SAN [1] 93.90±0.45 99.32±0.52 99.36±0.12 94.27±0.28 94.15±0.36 88.73±0.44 94.96
ETN [3] 94.52±0.20 100.0±0.00 100.0±0.00 95.03±0.22 96.21±0.27 94.64±0.24 96.73
RTNet [4] 96.20±0.30 100.0±0.00 100.0±0.00 97.60±0.10 92.30±0.10 95.40±0.10 96.90
BA3US [16] 98.98±0.28 100.0±0.00 98.73±0.00 99.36±0.00 94.82±0.05 94.99±0.08 97.81
DRCN [15] 88.05 100.0 100.0 86.00 95.60 95.80 94.30
SRLCWC [5] 92.07 95.84 99.24 94.46 93.68 93.72 94.84
DCC [14] 99.70 100.0 100.0 96.10 95.30 96.30 97.90

SPDA (Ours) 99.32±0.02 100.0±0.00 100.0±0.00 96.18±0.32 96.03±0.25 96.56±0.00 98.01

Table 2: Accuracy (%) on the Office-31 dataset under the PDA setting with the ResNet-50
as the backbone.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 [11] 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35
DAN [17] 35.70 52.90 63.70 45.00 51.70 49.30 42.40 31.50 68.70 59.70 34.60 67.80 50.30
DANN [7] 43.76 67.90 77.47 63.73 58.99 67.59 56.84 37.07 76.37 69.15 44.30 77.48 61.72
ADDA [31] 45.23 68.79 79.21 64.56 60.01 68.29 57.56 38.89 77.45 70.28 45.23 78.32 62.82

PADA [2] 51.95 67.00 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.6 77.09 62.06
IWAN [37] 53.94 54.45 78.12 61.31 47.95 63.32 54.17 52.02 81.28 76.46 56.75 82.90 63.56
SAN [1] 44.42 68.68 74.60 67.49 64.99 77.80 59.78 44.72 80.07 72.18 50.21 78.66 65.30
ETN [3] 59.24 77.03 79.54 62.92 65.73 75.01 68.29 55.37 84.37 75.72 57.66 84.54 70.45
RTNet [4] 63.20±0.10 80.10±0.20 80.70±0.10 66.70±0.10 69.30±0.20 77.20±0.20 71.60±0.30 53.90±0.30 84.60±0.10 77.40±0.20 57.90±0.30 85.50±0.10 72.30
BA3US [16] 60.62±0.45 83.16±0.12 88.39±0.19 71.75±0.19 72.79±0.19 83.40±0.59 75.45±0.19 61.59±0.37 86.53±0.22 79.25±0.65 62.80±0.51 86.05±0.26 75.98
DRCN [15] 54.00 76.40 83.00 62.10 64.50 71.00 70.80 49.80 80.50 77.50 59.10 79.90 69.00
SRLCWC [5] 56.21 73.34 80.63 64.08 61.72 66.41 70.83 53.13 83.57 77.01 58.31 81.24 68.87
DCC [14] 59.00 84.40 83.40 67.80 72.70 79.80 68.40 53.20 83.70 75.80 59.00 88.30 73.00

SPDA (Ours) 64.24±0.24 87.79±0.11 88.74±0.08 74.29±0.22 75.10±0.03 79.05±0.33 79.37±0.15 58.91±0.13 85.05±0.42 81.36±0.09 67.41±0.21 84.09±0.38 77.12

Table 3: Accuracy (%) on the Office-Home dataset under the PDA setting with the ResNet-
50 as the backbone.

On the Office-31 dataset, as Table 2 shows, all the DA methods (i.e., DAN, DANN,
and ADDA) are inferior to the standard ResNet-50, showing that they suffer from the neg-
ative transfer, which means DA methods cannot be directly applied to the PDA setting due
to the difference in the label spaces of the two domains. Moreover, the proposed SPDA
method achieves the best average accuracy and performs the best in three out of six transfer
tasks. Specifically, for easy transfer tasks (i.e., D→W and W→D), similar to some baseline
methods, the proposed SPDA method achieves 100% accuracy and is very stable with zero
standard deviations. For hard transfer tasks (i.e., D→A and W→A), the proposed SPDA
method achieves the best or the second best results, which shows that our method is suitable
for hard transfer tasks that transfer from a small domain to a large domain.

On the large-scale challenging Office-Home dataset, the proposed SPDA method outper-
forms all the baseline methods and obtains the best average accuracy 77.12%, which is about
1.2% higher than the state-of-the-art performance achieved by the BA3US method as shown
in Table 3. In all the 12 transfer tasks on this dataset, the proposed SPDA method achieves
the best results in eight tasks. Similar to the Office-31 dataset, for transfer tasks from a small
domain to a large domain (i.e., Ar→Cl, Ar→Pr, and Ar→Rw), the proposed SPDA method
achieves the best results, showing that the SPDA method is suitable for this setting. For all
the DA methods, DAN performs inferior to ResNet-50, leading to the negative transfer, while
DANN and ADDA perform comparable to ResNet-50, implying that DA methods may not
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be helpful on this dataset.

Method R→S S→R Avg

ResNet-50 [11] 64.28 45.26 54.77
DAN [17] 68.35 47.60 57.98
DANN [7] 73.84 51.01 62.43

PADA [2] 76.50 53.53 65.01
IWAN [37] 71.30 48.60 59.95
SAN [1] 69.70 49.90 59.80
ETN [3] 78.24 68.53 73.39
BA3US [16] 69.25 74.27 71.76
DRCN [15] 73.20 58.20 65.70

SPDA (Ours) 92.47±3.83 82.91±1.76 87.69

Table 4: Accuracy (%) on the VisDA-
2017 dataset under the PDA setting with the
ResNet-50 as the backbone.

On the most challenging VisDA-2017
dataset, as shown in Table 4, the proposed
SPDA method achieves new state-of-the-art
results on the two tasks and on average,
which improves the current best results (i.e.,
78.24% (R→S) by ETN, 74.27% (S→R) by
BA3US, and 73.39% (Avg) by ETN) by a
large margin of about 14.23%, 8.64%, and
14.30%, respectively. One possible rea-
son of such significant improvement made
by the proposed method is that the VisDA-
2017 dataset is so large that existing meth-
ods may be hard to choose appropriate sam-
ples, while the proposed method can utilize
the proposed MoC to do a better job.

4.3 Ablation Study
We conduct ablation study on the Office-Home and Office-31 datasets to analyze the effects
of the MoC similarity and the selective training method used in the SPDA method, respec-
tively.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 46.33 67.51 75.87 59.14 59.94 62.73 58.22 41.79 74.88 67.40 48.18 74.17 61.35

SPDA w/o ST 56.06 77.48 82.61 67.68 64.93 73.50 70.71 50.51 81.56 79.98 61.49 82.86 70.78
SPDA w/o MoC 60.66 85.27 86.25 69.97 70.14 77.03 70.71 52.00 81.23 76.68 56.36 79.22 72.13
SPDA 64.24 87.79 88.74 74.29 75.10 79.05 79.37 58.91 85.05 81.36 67.41 84.09 77.12

Table 5: Ablation study on the Office-Home dataset, where ‘ST’ denotes the selective train-
ing method.

From the ablation study on the Office-Home dataset shown in Table 5, in some transfer
tasks (i.e., Pr→Rw, Rw→Ar, Rw→Cl, Rw→Pr), the performance of SPDA without the MoC
similarity is inferior to SPDA without the selective training method, which means the MoC
similarity is more important than the selective training method in these transfer tasks. In
other transfer tasks, the selective training method seems to be more important than the MoC
similarity. Furthermore, using only the selective training method (i.e., SPDA w/o MoC) and
using only the MoC similarity (i.e., SPDA w/o ST) perform better than ResNet-50, which
shows the effectiveness of these two parts. When these two parts are used together (i.e.,
SPDA), the best performance is achieved, which proves the importance of these two parts to
the proposed SPDA method.

Results of the ablation study on the Office-31 dataset are shown in Fig. 3. According
to the results, similar observations to the Office-Home dataset are observed, which again
demonstrates the importance of these two parts to the SPDA method.

4.4 Sensitivity Analysis
We conduct sensitivity analysis with respect to the threshold θ on transfer tasks: A→W
on the Office-31 dataset and Ar→Cl on the Office-Home dataset. In detail, we vary the
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Figure 3: Ablation study on the Office-31
dataset, where ‘ST’ denotes the selective
training method.
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Figure 4: The performance of the SPDA
method on two transfer tasks A→W and
Ar→Cl when varying with the threshold
θ .

threshold θ from 0.8 to 1.0 at an interval of 0.02 with the experimental results shown in
Fig. 4. According to the results, we can see that when θ is between 0.88 and 0.92, the
performance does not make much difference, which implies that the SPDA method is not
so sensitive to θ within a certain range. Moreover, when θ equals 0.9, the SPDA method
achieves the best performance on these two transfer tasks. Hence, we set θ to 0.9 in all the
experiments.

5 Conclusions

In this paper, we propose the SPDA method, which selects useful data for partial domain
adaptation. Specifically, we first design the MoC similarity function for PDA to select use-
ful source data to measure the domain similarity. Then, we propose the selective training
method to first select target data with high confidence pseudo-labels and then add these data
to the source domain. Experiments on several datasets demonstrate the effectiveness of our
method. In future studies, we are interested in applying the MoC similarity to other DA
settings.
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