
JUNG ET AL.: UNIFIED NEGATIVE PAIR GENERATION 1

Unified Negative Pair Generation toward
Well-discriminative Feature Space for Face
Recognition

Junuk Jung
rnans33@koreatech.ac.kr

Seonhoon Lee
seonhoon1002@koreatech.ac.kr

Heung-Seon Oh
ohhs@koreatech.ac.kr

Yongjun Park
qkr2938@koreatech.ac.kr

Joochan Park
green669@koreatech.ac.kr

Sungbin Son
sbson0621@koreatech.ac.kr

School of Computer Science and
Engineering
Korea University of Technology and Ed-
ucation (KOREATECH)

Abstract

The goal of face recognition (FR) can be viewed as a pair similarity optimization
problem, maximizing a similarity set S p over positive pairs, while minimizing simi-
larity set Sn over negative pairs. Ideally, it is expected that FR models form a well-
discriminative feature space (WDFS) that satisfies infS p > supSn. With regard to WDFS,
the existing deep feature learning paradigms (i.e., metric and classification losses) can be
expressed as a unified perspective on different pair generation (PG) strategies. Unfortu-
nately, in the metric loss (ML), it is infeasible to generate negative pairs taking all classes
into account in each iteration because of the limited mini-batch size. In contrast, in clas-
sification loss (CL), it is difficult to generate extremely hard negative pairs owing to the
convergence of the class weight vectors to their center. This leads to a mismatch be-
tween the two similarity distributions of the sampled pairs and all negative pairs. Thus,
this paper proposes a unified negative pair generation (UNPG) by combining two PG
strategies (i.e., MLPG and CLPG) from a unified perspective to alleviate the mismatch.
UNPG introduces useful information about negative pairs using MLPG to overcome the
CLPG deficiency. Moreover, it includes filtering the similarities of noisy negative pairs
to guarantee reliable convergence and improved performance. Exhaustive experiments
show the superiority of UNPG by achieving state-of-the-art performance across recent
loss functions on public benchmark datasets. Our code and trained models are publicly
available1.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1https://github.com/Jung-Jun-Uk/UNPG.git

https://github.com/Jung-Jun-Uk/UNPG.git
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Figure 1: Similarity distributions viewed from pair generation perspective for approximating
WDFS. The bottom line presents similarity distributions in feature space after sufficiently
learning in their own ways with the top line. S p and Sn are positive and negative similarity
sets and Ŝ p and Ŝn are subsets of S p and Sn, respectively. (a) The ideal similarity sets
satisfying infS p > supSn after learning with S p and Sn. θ

p
max and θ n

min are the max and
min angles among positive and negative pairs. (b) Using a softmax loss, no overlap between
Ŝ p and Ŝn results in an overlap between S p and Sn. (c) Using a marginal loss, an overlap
between Ŝ p and Ŝn by shifting Ŝ p reduces an overlap after learning. (d) Using more negative
pairs, an overlap between Ŝ p and Ŝn by shifting Ŝ p and enlarging Ŝn significantly reduces
the overlap after learning.

1 Introduction

The goal of face recognition (FR) can be viewed as a pair similarity optimization problem
that maximizes a similarity set S p over positive pairs while minimizing a similarity set Sn

over negative pairs. Regardless of FR tasks such as face verification (1:1) and face identifi-
cation (1:N), it is expected that FR models form a well-discriminative feature space (WDFS)
that satisfies infS p > supSn as shown in Fig. 1 (a). To this end, previous research advances
pair similarity optimization[5, 18, 20, 30, 36, 37, 41] by enhancing intra-class compactness
and inter-class dispersion.

In deep feature learning paradigms for pair similarity optimization, loss functions in FR
can be categorized based on two approaches: metric loss (ML; e.g., triplet loss[9, 25] and N-
pair loss[28]) and classification loss (CL; e.g., softmax loss[2, 23, 32]). The former directly
performs the optimization with a pair of deep feature vectors using a pair-wise label whereas
the latter performs indirectly with a pair of deep feature and class weight vectors using a
class-level label. Recently, in circle loss[30], two different approaches were expressed as a
unified loss function since their intent and behaviors pursued the same objective of maxi-
mizing a similarity set S p over positive pairs, while minimizing it over negative pairs. We
decomposed the unified loss function into pair generation (PG) and similarity computation
(SC) without loss of generality. While SC focuses on computing the similarity between two
samples in a pair, PG focuses on generating a pair using vectors of deep features or class
weights. In the unified loss function, the only difference between ML and CL is PG, because
various methods in SC can be applied to both ML and CL in the same manner. Consequently,
the core of FR research from a unified perspective is the generation of informative pairs, i.e.,
PG. This is crucial because only a limited number of pairs are trainable in each iteration

Citation
Citation
{Deng, Guo, Xue, and Zafeiriou} 2019

Citation
Citation
{Liu, Wen, Yu, Li, Raj, and Song} 2017

Citation
Citation
{Meng, Zhao, Huang, and Zhou} 2021

Citation
Citation
{Sun, Cheng, Zhang, Zhang, Zheng, Wang, and Wei} 2020

Citation
Citation
{Wang, Wang, Zhou, Ji, Gong, Zhou, Li, and Liu} 2018{}

Citation
Citation
{Wang, Han, Huang, Dong, and Scott} 2019

Citation
Citation
{Yu and Tao} 2019

Citation
Citation
{Hoffer and Ailon} 2015

Citation
Citation
{Schroff, Kalenichenko, and Philbin} 2015

Citation
Citation
{Sohn} 2016

Citation
Citation
{Cao, Shen, Xie, Parkhi, and Zisserman} 2018

Citation
Citation
{Parkhi, Vedaldi, and Zisserman} 2015

Citation
Citation
{Taigman, Yang, Ranzato, and Wolf} 2014

Citation
Citation
{Sun, Cheng, Zhang, Zhang, Zheng, Wang, and Wei} 2020



JUNG ET AL.: UNIFIED NEGATIVE PAIR GENERATION 3

owing to the large computational costs incurred. Based on the assumption that pairs sampled
from mini-batches can represent the entire feature space, the existing methods decrease the
loss to a pair as it approaches WDFS, whereas they increase the loss in the opposite case.

We observed the reason why FR models trained sufficiently fail to approach WDFS. This
stems from the mismatch of similarity distributions between the sampled pairs and all pairs.
Fig. 1 (b) shows an example of two similarity sets Ŝ p and Ŝn of positive and negative pairs,
respectively, sampled from mini-batches. Even though feature space is far from WDFS by
highly overlapped S p and Sn, a FR model is rarely trainable with Ŝ p and Ŝn because they
are well-separated with almost no overlap so that an only slight loss is assigned. To deal with
this problem, a line of research[5, 18, 20, 30, 36, 37, 41] devises marginal loss functions to
reduce the gap by shifting Ŝ p, as shown in Fig. 1 (c). In general, marginal CL functions
show better performance than ML functions on large-scale datasets[6]. However, there still
exists a mismatch between the sampled negative pairs and all negative pairs because it is
difficult to obtain too-hard negative pairs.

This paper proposes unified negative pair generation (UNPG) by combining two PG
strategies (i.e., MLPG and CLPG) from a unified perspective to alleviate the mismatch.
Moreover, it includes filtering noise-negative pairs, such as too-easy/hard negative pairs,
in order to guarantee reliable convergence and improve performance. Consequently, UNPG
helps approach WDFS, as shown in Fig. 1 (d). Through experiments, we demonstrate the
superiority of UNPG by achieving state-of-the-art performance using recent loss functions
equipped with UNPG on public benchmark datasets (IJB-B[39], IJB-C[19], MegaFace[14],
LFW[11], CFPFP[26], AgeDB-30[21], CALFW[43], and K-FACE[3]) and deliver an in-
depth analysis of the reasons behind UNPG.

2 Related Works
FR is one of the most promising computer-vision tasks. In recent times, the combination
of the following three factors has contributed to the rapid growth of this technology: 1)
introduction to large-scale face datasets[6, 29, 40], 2) development of effective backbone
models[8, 10, 16, 27, 31], 3) novel loss functions[5, 20, 36]. Among them, loss functions
have been actively developed and can be categorized into metric and classification losses.
Metric Loss. Early direct optimization methods include contrastive loss[4, 7] and triplet
loss[9, 25], which use the similarity between pairs or triplets in the feature space. They try to
make positive samples close and push negative samples far away, but often suffer from slow
convergence and poor local optima because they only learn 1:1 relationships in positive and
negative pairs. Thus, lifted-structure loss[22] and N-pair loss[28] were designed to address
this issue. They build massive negative samples and one positive sample based on the same
anchor point and learn their relationship simultaneously. Subsequently, other methods have
been developed to create more informative pairs. Multi-similarity loss[37] classifies existing
studies into three types of similarities and devises pair mining and pair weighting methods
that satisfy them simultaneously. Tuplet-margin loss[41] provides a slack margin to prevent
overfitting from hard triplets. Despite these efforts, ML still faces a problem: The negative
pairs generated by each iteration cannot represent all identities because FR datasets[6, 29, 40]
usually have more classes than a mini-batch size.
Classification Loss. Early indirect optimization methods include softmax loss[2, 23, 32],
which uses the similarity between the deep feature and class weight vectors. Softmax loss
has been widely applied in classification problems, but it is not appropriate for FR because
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testing is done by similarity comparison, not classification. Hence, two methods are being in-
vestigated to modify the softmax logit to form a feature space suitable for FR. The first is the
normalization of the deep feature and class weight vectors[24, 35, 36] to reduce the gap be-
tween the training and test phases mapped to the cosine similarity space. This is motivated by
the interpretation of the feature space of studies such as center-loss[38], L-softmax[17], and
NormFace[34]. The second is a margin assignment technique[1, 5, 12, 15, 18, 20, 35, 36],
which is performed in various ways to enhance intra-class compactness and inter-class dis-
persion. CosFace[36] and ArcFace[5], which are typical margin-based loss functions, add
external and internal margins to cosine angles, respectively. ElasticFace[1] extended Cos-
Face and ArcFace by using random margin penalty values derived from a Gaussian dis-
tribution rather than a fixed margin. CurricularFace[12] adopted curriculum learning that
automatically injects adaptive margins based on the difficulty level of samples and training
time. MagFace[20] introduced a new margin and regularizer technique within several con-
straints that assumed a positive correlation between magnitude and face quality and ensured
convergence. AdaFace[15] is similar to MagFace but different in using normalized image
quality indicators when calculating adaptive margins. They improved FR performance by
creating discriminative features. However, in our interpretation, there is a problem that ex-
tremely hard negative similarities in the feature space cannot be expressed by the indirect
optimization method alone.
Multi-Objective Loss & Unified Loss. Multi-objective loss tried to combine two different
losses with a mixture weight at the surface level. MixFace[13] attempted to combine the
metric and classification losses (i.e., Lmix = Larc +Lsn−pair) with an analysis of their ad-
vantages and disadvantages. However, it is a mixture at the surface level and not a unified
loss function. According to the Circle-loss[30], the two existing approaches (i.e., metric and
classification losses) can be expressed as a unified loss function. It also adds independent
weight factors to deal with ambiguous convergence but is limited in generating pairs (e.g.,
Circle-loss[30] used only MLPG).

3 Methodology
Unified Loss. According to [28, 30], the classification and metric losses can be expressed
as a unified loss function (i.e., cross-entropy loss). Suppose that Ŝ p = {sp

i |i = 1,2, ...,K}
and Ŝn = {sn

j | j = 1,2, ...,L} are the similarity scores for K positive and L negative pairs,
respectively. Then, the unified loss function is defined as:

Luni =
1
K

K

∑
i=1

Luni
i ,

Luni
i =− log

eγsp
i

eγsp
i +∑

L
j=1 eγsn

j
= log [1+

L

∑
j=1

eγ(sn
j−sp

i )]

(1)

where γ is a positive scale factor.
The only difference between the two losses is the method of computing Ŝ p and Ŝn. We

break down this step into PG and SC to clearly explain our proposed method without loss of
generality.
Pair Generation (PG). In a feature space, let us assume that xi and x j are i-th and j-th
samples in N-sized mini-batch and yi and y j are the corresponding indexes of target classes
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in a total of C classes. wc is a weight vector of c-th class. Then, we generate positive
and negative pair sets P and N for the metric (Eq. 2) and classification (Eq. 3) losses,
respectively:

Pml = {(xi,x j)|y j = yi}
Nml = {(xi,x j)|y j ̸= yi}

(2)

Pcl
i = (xi,wyi)

N cl
i = {(xi,wc)|c ̸= yi}

(3)

In ML, a pair is composed of two samples (e.g., xi and x j) from a mini-batch, and is com-
posed of a sample and a weight vector (e.g., xi and wc) in CL. We denote MLPG and CLPG
for PG of the metric and classification losses, respectively.
Similarity Computation (SC). We can compute the similarity sets Ŝ p and Ŝn obtained from
PG. The metric and classification losses employ the same similarity method for the same
type of pair sets (i.e., positive sets Pml and Pcl and negative sets Nml and N cl). Recent
research has focused on improving the cosine similarity using a margin. Let us define the
angle between two vectors as Θ(a,b) = arccos(a⊤b/∥a∥∥b∥). Then, SN-pair[13] computes
Ŝ p and Ŝn for Pml and Nml as:

Ŝ p = {cosΘ(xi,x j)|y j = yi}
Ŝn = {cosΘ(xi,x j)|y j ̸= yi}

(4)

Note that the Ŝn of Eq. 4 generates the similarities of all negative pairs in the mini-batch, not
just the similarities between the anchor and the negative ones, to approach the WDFS (see.
Eq. 9 and Eq. 10).

There is a line of research[5, 20, 36] that employs a margin in cosine similarity. In
CosFace [33], margin m is placed outside cosine for Ŝ p. Thus, Ŝ p and Ŝn are computed for
Pcl

i and N cl
i as:

Ŝ p
i = {cosΘ(xi,wyi)+m}

Ŝn
i = {cosΘ(xi,wc)|c ̸= yi}

(5)

On the other hand, ArcFace[5] places margin m inside cosine:

Ŝ p
i = {cos(Θ(xi,wyi)+m)} (6)

In other research using margins such as SphereFace[18] and MagFace[20], Ŝ p and Ŝn can
be derived similarly without loss of generality.
Unified Negative Pair Generation (UNPG). We address the fact that PG is the only differ-
ence between metric and classification losses from a unified perspective. Previous studies[5,
18, 20, 36, 37, 41] attempted to reduce the gap between S p and Ŝ p by devising various
margin-based methods. Evidently, there is no concern about the gap between Sn and Ŝn

even though it is a critical component in computing a loss. There are several reasons that
cause the gap between Sn and Ŝn. In ML, it is infeasible to generate negative pairs taking all
classes into account in each iteration because of the limited mini-batch size.
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Figure 2: Unified loss with UNPG.

In CL, it is difficult to generate too-hard neg-
ative pairs owing to the convergence of the
class weight vectors to their center. This
paper proposes unified negative pair genera-
tion (UNPG) by combining MLPG and CLPG
strategies from a unified perspective to allevi-
ate the mismatches of (Sn, Ŝn) and (S p, Ŝ p),
together. UNPG introduces useful information
about negative pairs using MLPG to overcome
the CLPG deficiency. In UNPG, a negative pair
set N uni

i and the corresponding similarity set
Ŝn

i are defined as:

N uni
i =N cl

i ∪Nml

Ŝn
i = {cosΘ(xi,wc)|c ̸= yi}∪{cosΘ(xi,x j)|y j ̸= yi}

(7)

Ŝn
i can be computed from N uni

i using various methods such as Eqs. 4 and 5. Decompos-
ing SC and PG can lead to wide research directions in FR. As a result, the unified loss with
UNPG is defined as:

Luni
i =− logPi =− log

eγsp
i

eγsp
i +∑

Lcl
j=1 eγsn

j +∑
Lml
k=1 eγsn

k
(8)

where Lcl = |N cl
i | and Lml = |Nml |. Note that the normalization term in Eq. 8 uses the

scores from Nml . Fig. 2 visualizes Eq. 8, where UNPG uses the similarity score matrix
obtained from Nml at each mini-batch and then duplicates it by the size of the mini-batch.

Whether CL or ML, many loss functions (ArcFace[5], CosFace[36], triplet-loss[9], N-
pair loss[28] etc.,) induce the similarity between the anchor and the positive sample to be
higher than the similarity between the anchor and the negative sample. These methods might
be useful in image retrieval tasks that employ recall@k between anchors and other samples
as an evaluation protocol to reduce the gap between training and testing. However, it is
not appropriate for tasks such as face verification (WDFS: ∀sp

i > ∀sn
j ⇐⇒ infS p > supSn

), which intends the similarity between any two positive samples to be higher than any two
negative samples. Therefore, the WDFS approach for FR needs to be intended from Eq. 10
as the proposed method, not Eq. 9.

cosΘ(xa,wya)> {cosΘ(xa,wc)|c ̸= ya} (9)
cosΘ(xa,wya)> {cosΘ(xa,wc)|c ̸= ya}∪{cosΘ(xi,x j)|y j ̸= yi} (10)

Note that xa is an anchor example and cosΘ(xa,wya) is deformable through various
margin injecting techniques.
Noise Negative Pair Filtering. According to our preliminary experiments, directly utilizing
Nml produced by MLPG causes performance degradation and divergence of a loss because
many noise-negative pairs cause a side-effect. We assumed that there are two types of noise
pairs: too-easy and too-hard pairs. In the former case, FR models need not pay attention to
the pairs but they do, owing to the size of the pairs. In the latter case, FR models cannot
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Algorithm 1: Noise Negative Pair Filtering.

Input: sn
j ∈ Ŝn from Nml , wisker size r

Extract the lower 25% similarity sn
l

Extract the upper 25% similarity sn
u

IQR = sn
u − sn

l
Min = sn

l − r∗IQR, Max = sn
u + r∗IQR

Ñml = {(xi,x j)|(yi ̸= y j)∧ (Min≤ sn
j ≤Max)}

Output: Ñml

allow them because they exceed the representation power of the models. To address this
problem, we developed noise-negative pair filtering using a box and whisker algorithm[33].

As a result, UNPG adopting Algorithm 1 is defined as:

N uni
i =N cl

i ∪Ñml

Ŝn
i = {cosΘ(xi,wc)|c ̸= yi}∪{cosΘ(xi,x j)|(y j ̸= yi)∧ (Min ≤ sn

j ≤ Max)}
(11)

4 Experiments
Datasets. For training, MS1M-V2[5] and K-FACE:T4[13] datasets were employed. MS1M-
V2, a semi-automatically refined version of MS-Celeb-1M[6], has 5.8M images and 85K
identities. K-FACE:T4 is a preprocessed version of K-FACE[3] utilized in MixFace[13]
and has 3.8M images and 370 identities. For testing, several benchmark datasets (IJB-
B[39], IJB-C[19], MegaFace[14], LFW[11], CFPFP[26], AgeDB-30[21], CALFW[43], and
K-FACE:Q1-Q4[13]) were used to evaluate FR models. The implementation details are pro-
vided in the supplementary material.

4.1 Evaluation Results
Results on IJB-B and IJB-C. IJB-B consists of 21.8K images of 1,845 subjects and 55K
frames of 7,011 videos. IJB-C, an extended version of IJB-B, contains 31.3K images of 3,531
subjects and 117.5K frames of 11,799 videos. 10K/8M and 19K/15M of positive/negative
pairs in IJB-B and IJB-C were used for 1:1 verification. Owing to the severe imbalance
between positive and negative pairs, performance was measured by TAR@FAR at differ-
ent intervals such as [1e-6, 1e-5, 1e-4, 1e-3, 1e-2]. As shown in Table 1, all FR models
with UNPG improved at almost every interval compared to those without UNPG. In partic-
ular, TAR@(FAR=1e-4), an interval widely used in FR improved consistently. For example,
Mag+UNPG obtained gains of 1.22% and 0.84% in IJB-B and IJB-C, respectively, compared
to MagFace, and gains of 0.7% and 0.41%, respectively, compared to MagFace*.
Results on LFW, CFP-FP, AgeDB-30, and CALFW. FR on LFW, CFP-FP, AgeDB-30,
and CALFW is straightforward. Thus, the performance was saturated. LFW, AgeDB-30,
and CALFW contain 6,000 images, and CFP-FP has 6,000 images. They have 1:1 ratios
between the positive and negative pairs. Verification accuracy was employed with the best
threshold separating the positive and negative pairs. In Table 2, the FR models with UNPG
obtained competitive performance on the four datasets.
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Results on MegaFace. MegaFace consists of a gallery set of 1M images with 690K classes
and probe photos of 100K images with 530 classes. We followed the test protocol of
ArcFace[5]. We removed noisy images and measured rank-1 accuracy for the 1M distractor
after following the identification scenarios using the devkit provided by MegaFace. Table 3
presents the results of this study. FR models with UNPG performed better than those with-
out it. ArcFace and CosFace using UNPG obtained gains of 0.26% and 0.19%, respectively,
compared to those without it.

Method Backbone IJB-B(TAR@FAR) IJB-C(TAR@FAR)
1e-6 1e-5 1e-4 1e-3 1e-2 1e-6 1e-5 1e-4 1e-3 1e-2

VGGFace2*[2] R50 - 67.10 80.00 - - - 74.70 84.00 - -
Circle-loss*[30] R34 - - - - - - 86.78 93.44 96.04 -
Circle-loss*[30] R100 - - - - - - 89.60 93.95 96.29 -

ArcFace*[5] R100 - - 94.20 - - - - 95.60 - -
MagFace*[20] R100 42.32 90.36 94.51 - - 90.24 94.08 95.97 - -

Triplet-loss R34 4.42 12.57 32.65 61.33 88.78 4.04 15.32 36.86 66.46 90.77
contrastive-loss R34 33.10 59.40 72.18 81.98 90.11 57.84 66.41 76.16 85.03 92.21

CosFace[36] R34 39.70 87.47 93.55 95.71 97.05 85.95 92.57 95.23 96.81 97.94
Cos+UNPG R34 43.33 87.51 93.58 95.96 97.24 87.84 92.49 95.33 96.94 98.06

ArcFace R34 40.61 86.28 93.38 95.74 97.22 85.47 92.21 95.08 96.79 97.94
Arc+Triplet R34 38.31 86.46 93.22 95.72 97.28 86.40 92.19 94.97 96.68 97.94

Arc+Contrastive R34 38.07 86.54 93.03 95.61 97.33 85.21 92.54 94.86 96.60 98.01
Arc+UNPG R34 40.27 88.05 93.66 95.96 97.17 87.99 93.02 95.33 96.88 97.92

CosFace R100 42.27 89.38 94.39 96.17 97.35 86.56 94.42 96.35 97.57 98.26
Cos+UNPG R100 49.13 90.61 94.99 96.50 97.36 86.95 94.48 96.39 97.57 98.24

ArcFace R100 40.68 89.99 94.89 96.40 97.59 86.57 93.93 96.25 97.43 98.31
Arc+UNPG R100 42.08 91.76 95.16 96.47 97.62 89.64 94.73 96.37 97.51 98.32

MagFace R100 43.71 89.03 93.99 96.11 97.32 87.19 93.30 95.54 97.00 98.05
Mag+UNPG R100 46.33 90.93 95.21 96.50 97.63 90.01 94.70 96.38 97.51 98.32

Table 1: Verification accuracy of TAR@FAR on IJB-B and IJB-C. “*” indicates results from
the original paper.

Method LFW CFP-FP AgeDB CALFW
Circle-loss* 99.73 96.02 - -
ArcFace* 99.82 - - 95.45
MagFace* 99.83 98.46 98.17 96.15
CosFace 99.83 97.72 98.11 96.11

Cos+UNPG 99.81 98.50 98.31 96.15
ArcFace 99.83 98.60 98.23 96.11

Arc+UNPG 99.83 98.60 98.25 96.13
MagFace 99.81 98.62 98.30 96.15

Mag+UNPG 99.81 98.52 98.38 96.21

Table 2: Verification accuracy on LFW, CFP-FP, AgeDB-30, and CALFW with ResNet-100
backbone.

Results on K-FACE. K-FACE focuses on FR under fine-grained conditions. It consists
of 4.3M images with 6 accessories, 30 illuminations, 3 expressions, and 20 poses for 400
persons. We adopted the same training and test splits used in MixFace[13]. The training
split was composed of 3.8M images with 370 persons. In particular, the test split, including
the remaining 30 persons, was partitioned into Q1, Q2, Q3, and Q4. The number next to Q
indicates the variance of conditions where it increases as more conditions are included. Q4 is
the most challenging task, whereas Q1 is the most straightforward task among the four. Table
4 presents the results of the FR models. Surprisingly, ArcFace with UNPG outperformed the
other FR models on Q1, Q2, Q3, and Q4. Specifically, it obtained gains of 25.38%, 19.34%,
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Method Rank-1 accuracy (%)
AdaCos*[42] 97.41

ArcFace* 98.35
Circle-loss* 98.50

MagFace 98.51
Mag+UNPG 98.03

ArcFace 98.56
Arc+UNPG 98.82

CosFace 99.08
Cos+UNPG 99.27

Table 3: Identification results on MegaFace datasets with ResNet-100 backbone except for
AdaCos. “*” indicates the results from the original paper.

Method Q4(TAR@FAR) Q3(TAR@FAR) Q2(TAR@FAR) Q1(TAR@FAR)
1e-4 1e-3 1e-4 1e-3 1e-4 1e-3 1e-3 1e-2

ArcFace 0.29 4.04 4.40 18.27 41.29 63.91 94.00 100
AdaCos 2.57 16.68 9.94 34.57 26.31 66.88 94.00 100

SN-pair[13] 7.21 17.45 21.16 30.85 33.26 55.92 91.80 97.60
MS-loss[37] 8.70 25.01 18.74 38.36 46.64 66.63 94.60 99.20
MixFace[13] 10.92 19.92 22.55 37.67 44.48 67.44 97.00 100

Circle-loss[30] 25.05 43.46 41.54 64.88 77.93 89.97 100 100
Arc+UNPG 50.43 64.05 60.88 78.68 93.26 95.68 100 100

Table 4: Verification accuracy of TAR@FAR on K-FACE with ResNet-34 backbone.

and 15.33% in TAR@(FAR=1e-4) compared to Circle-loss.

4.2 Analysis

Does it sufficiently satisfy WDFS? We conclude that UNPG helps FR models to form
WDFS by reducing the gap between Ŝ p and Ŝn. As shown in Fig. 3, we measured the
number of overlapping similarity scores between Ŝ p and Ŝn using ArcFace, CosFace, and
MagFace with and without UNPG after training with R100. We randomly sampled 256
positive pairs and 256 most hard negative pairs at each iteration from MS1M-V2. After
1000 iterations, we generated Ŝ p and Ŝn, each with a total of 257,992, and calculated the

Figure 3: Comparison of overlapping simi-
larities for positive and negative pairs with
and without UNPG.

Figure 4: Effects of noise negative pair filter-
ing in UNPG with ResNet-34.
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Figure 5: Effects of backbone capacity and whisker size on IJB-B (left) and IJB-C (right).

overlap between them using a histogram. Obviously, applying UNPG reduced the gaps of
260 (ArcFace), 321 (CosFace), and 440 (MagFace) consistently. This proves the effect of
UNPG, as expected.
Effect of Noise-negative Pair Filtering. To approximate WDFS, Nml was assumed to
include extremely hard negative pairs because it can produce similarity scores similar to
supSn. In Fig. 4, we observed that an FR model using Nml without filtering (+UNPG w/o
filtering) at each iteration leads to performance degradation and the divergence of a loss
on LFW, whereas it achieved better performance and convergence of a loss with filtering
(+UNPG). Although FR models should adequately distinguish too-hard negative pairs ulti-
mately, we argue that it causes adverse effects using a model lacking representation power
to cover them.

We can deal with too-hard pairs by enlarging the model capacity, as depicted in Fig. 5.
We conducted experiments using ArcFace with different backbones, R34 and R100, on IJB-
B, IJB-C and MegaFace for verification and identification. In R34, the highest performance
was obtained at whisker size r = 1.0 on all datasets, whereas it was obtained at r = 2.0 in
R100. This reveals that the informative range determined by whisker size r also increases as
a model has a large representation power. More analysis can be found in the supplementary
material.

5 Conclusion
This paper is based on two insights. First, from a unified perspective, CL and ML have the
same purpose of approaching WDFS, except for PG. Second, CL and ML show a mismatch
between two similarity distributions of sampled pairs and all negative pairs. Based on these
insights, we developed UNPG by combining two PG strategies (MLPG and CLPG) to alle-
viate the mismatch. Filtering was also applied to remove negative pairs in both too-easy and
too-hard pairs. It was observed that UNPG increases the ability to learn existing FR models
compared to MLPG and CLPG by providing more informative pairs. Finally, we suggest
two research directions in FR: 1) pair generation strategies in the qualitative aspect and 2)
loss functions considering the capability of representation power.
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