
Unified Negative Pair Generation toward Well-Discriminative Feature Space for Face Recognition

Junuk Jung, Seonhoon Lee, Heung-Seon Oh*, Yongjun Park, Joochan Park, Sungbin Son {rnans33, karma1002, ohhs, qkr2938, green669, sbson0621}@koreatech.ac.kr Korea University of Technology and Education (KOREATECH)

 \boldsymbol{x}_3

 x_4

 \boldsymbol{x}_2

 \boldsymbol{x}_1

한국기술교육대학교

KOREATECH

Defi	Proposed Methods					
(Bad) Low-Discriminative Feature Space	(Good) Well-Discriminative Feature Space $S^n = S^p$	UN		x_1 x_2		
$\begin{array}{c c} \theta_{max}^{p} & \theta_{min}^{n} \\ \hline & -1 & 1 \end{array}$	θ_{max}^{p} θ_{min}^{n} $rac{1}{1}$	$\begin{array}{c} \mathbf{CLPG} \\ \mathbf{w}_1 \ \mathbf{w}_2 \ \mathbf{w}_3 \ \mathbf{w}_4 \ \mathbf{w}_5 \\ \mathbf{x}_1 \end{array}$	MLPGDuplication s_3^n s_4^n s_6^n s_7^n s_9^n	x_3 x_4		
Definition of WDES: The space the	t for all negative pair similarities s^n	$\begin{array}{c c} x_2 \\ x_3 \\ \hline \end{array} \\ \hline $	s_3^n s_4^n s_6^n s_7^n s_9^n s_3^n s_4^n s_6^n s_7^n s_9^n			

Definition of WDF5: The space that for all negative pair similarities, s are lower than **any positive pair similarities**, s^p

 $\cdots W_N$

...

...

•••

0

 \boldsymbol{x}_a

 W_N

 S_{N-1}^n

Motivation

Classification Loss with CLPG

0

 \boldsymbol{x}_a

 W_1

 S_1^n

 \boldsymbol{x}_a

 W_3

 S_2^n

 $W_1 = W_2 = W_3 = W_4$

ла

()

ra

 W_{2}

logit

label

calculate

similarity

Metric Loss with MLPG

 $x_1 x_2 x_3 x_4 x_5$

0

0

 \boldsymbol{x}_a

 S_3^n

xa

 S_4^n

 \boldsymbol{x}_{a}

0

 \boldsymbol{x}_a

 S_1^n

0

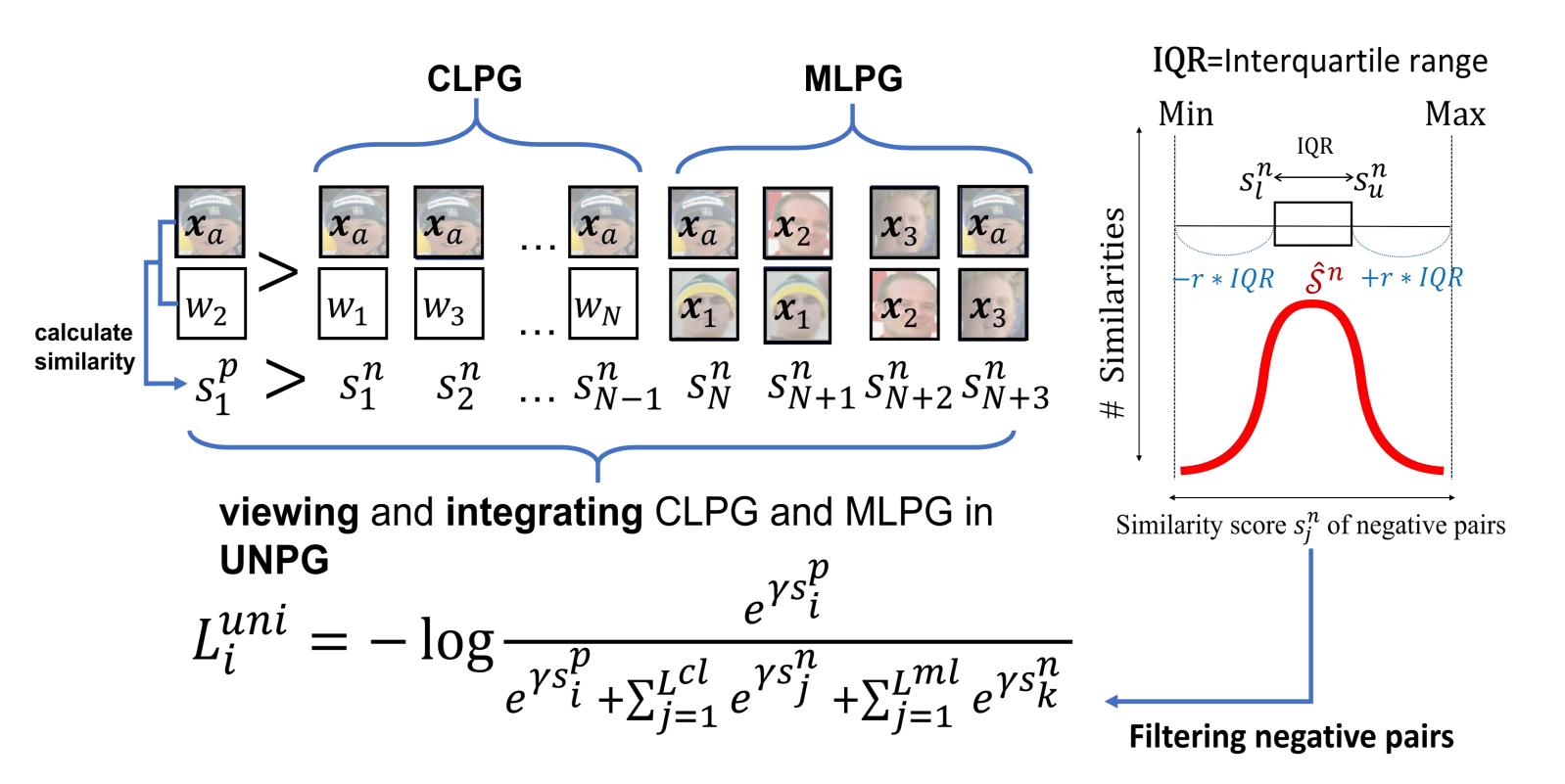
 \boldsymbol{x}_a

 S_2^n

logit

label

 \boldsymbol{x}_a


 x_5

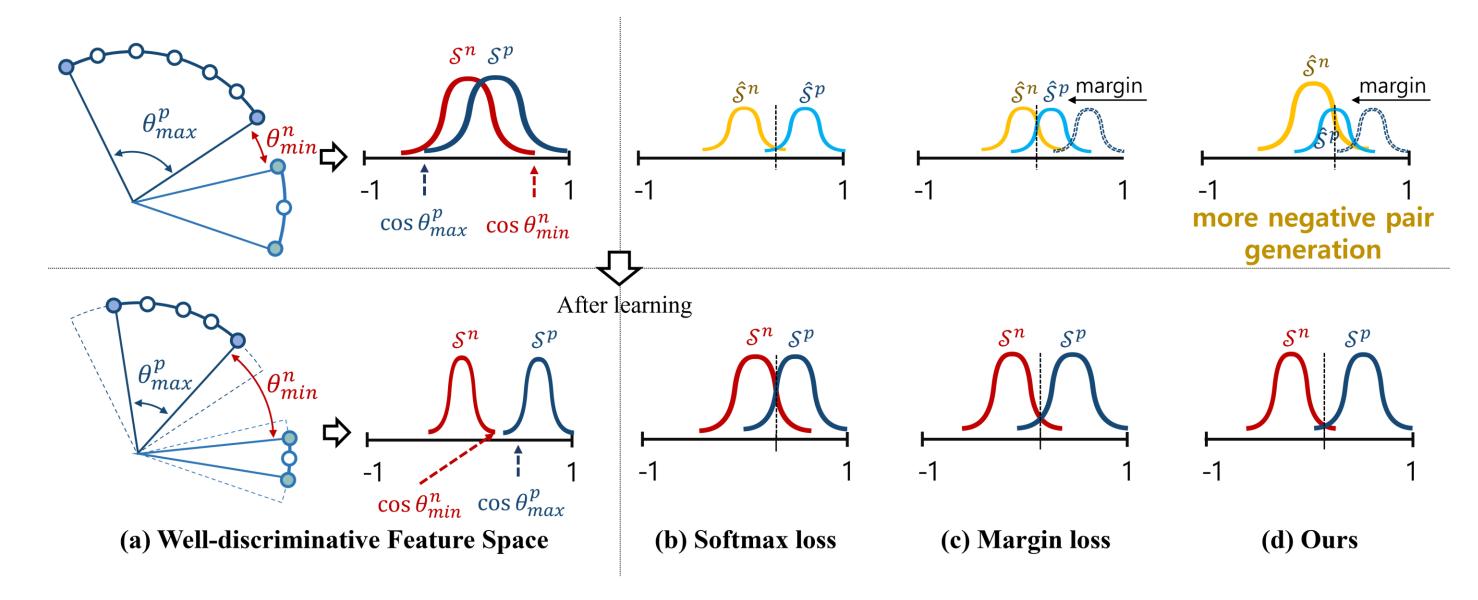
 S_1^p

cosine similarity of negative pairs in \mathcal{N}^{cl} or \mathcal{N}^{ml}

cosine similarity of positive pairs in \mathcal{P}^{cl} or \mathcal{P}^{ml}

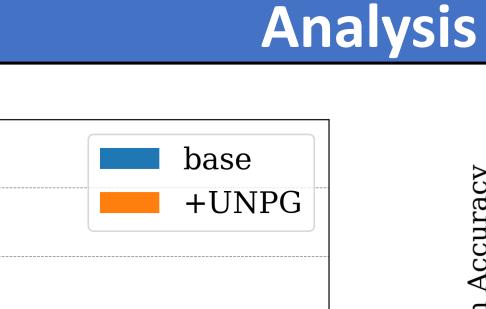
Cross-entropy loss

	Pros	Cons
CLPG	\boldsymbol{x}_a can be matched with all weight vectors at once	x_a is only matched with weight vectors, not real face features
MLPG	\boldsymbol{x}_a can be matched with	Making pairs can be biased

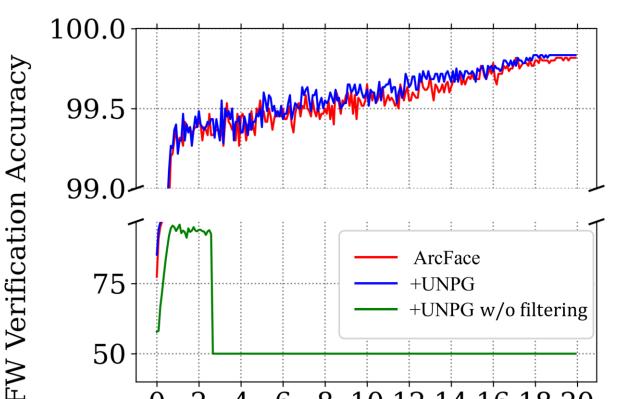

Experiments

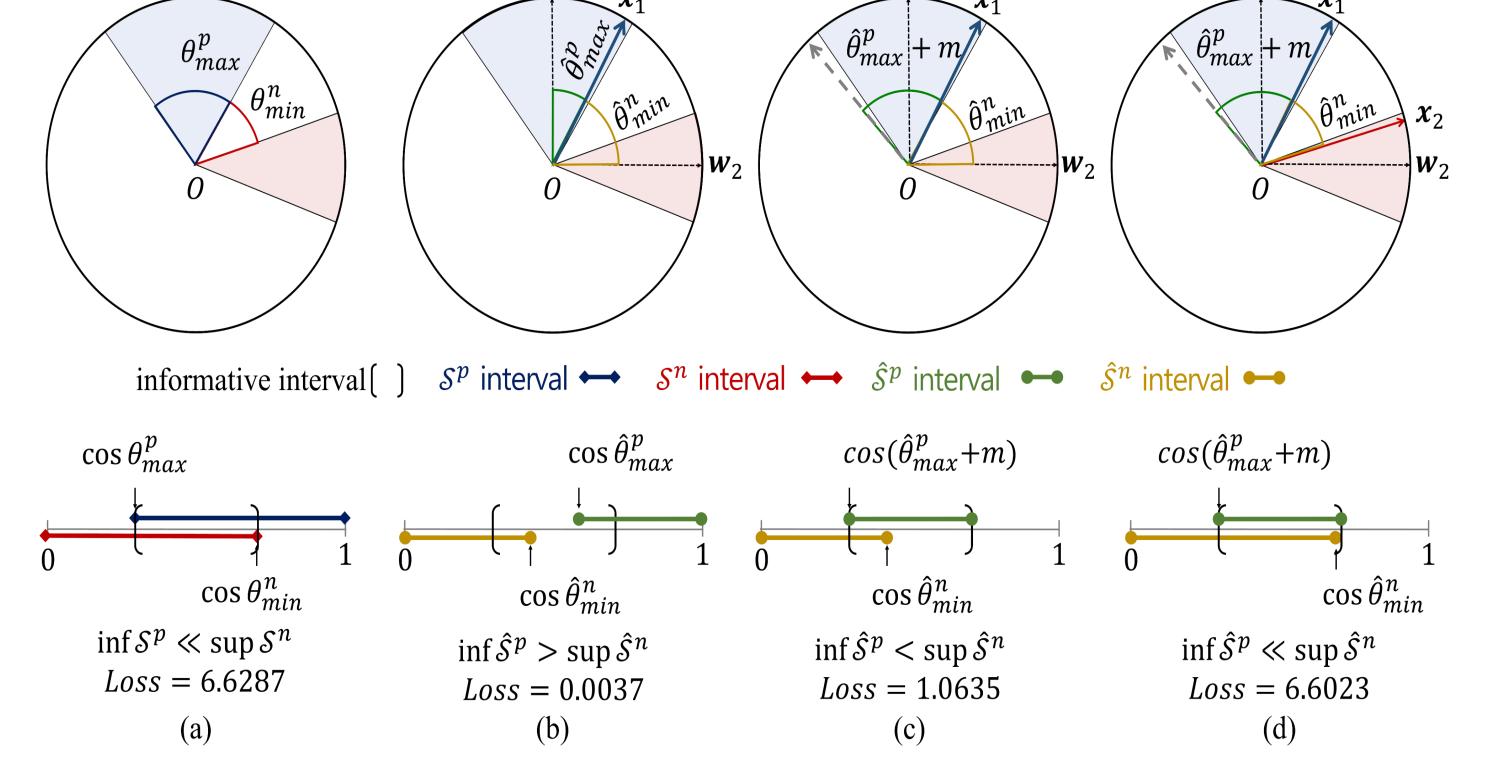
Method	Baakhana	IJB-B(TAR@FAR)				IJB-C(TAR@FAR)					
	Backbone –	1e-6	1e-5	1e-4	1e-3	1e-2	1e-6	1e-5	1e-4	1e-3	1e-2
VGGFace2*[2]	R50	-	67.10	80.00	-	-	-	74.70	84.00	-	-
Circle-loss*[30]	R34	-	-	-	-	-	-	86.78	93.44	96.04	-
Circle-loss*[30]	R100	-	-	-	-	-	-	89.60	93.95	96.29	-
ArcFace*[5]	R100	-	-	94.20	-	-	-	-	95.60	-	-
MagFace*[20]	R100	42.32	90.36	94.51	-	-	90.24	94.08	95.97	-	-
Triplet-loss	R34	4.42	12.57	32.65	61.33	88.78	4.04	15.32	36.86	66.46	90.77
contrastive-loss	R34	33.10	59.40	72.18	81.98	90.11	57.84	66.41	76.16	85.03	92.21
CosFace[36]	R34	39.70	87.47	93.55	95.71	97.05	85.95	92.57	95.23	96.81	97.94
Cos+UNPG	R34	43.33	87.51	93.58	95.96	97.24	87.84	92.49	95.33	96.94	98.06
ArcFace	R34	40.61	86.28	93.38	95.74	97.22	85.47	92.21	95.08	96.79	97.94
Arc+Triplet	R34	38.31	86.46	93.22	95.72	97.28	86.40	92.19	94.97	96.68	97.94
Arc+Contrastive	R34	38.07	86.54	93.03	95.61	97.33	85.21	92.54	94.86	96.60	98.01
Arc+UNPG	R34	40.27	88.05	93.66	95.96	97.17	87.99	93.02	95.33	96.88	97.92
CosFace	R100	42.27	89.38	94.39	96.17	97.35	86.56	94.42	96.35	97.57	98.26
Cos+UNPG	R100	49.13	90.61	94.99	96.50	97.36	86.95	94.48	96.39	97.5 7	98.24
ArcFace	R100	40.68	89.99	94.89	96.40	97.59	86.57	93.93	96.25	97.43	98.31
Arc+UNPG	R100	42.08	91.76	95.16	96.47	97.62	89.64	94.73	96.37	97.51	98.32
MagFace	R 100	43.71	89.03	93.99	96.11	97.32	87.19	93.30	95.54	97.00	98.05
Mag+UNPG	R100	46.33	90.93	95.21	96.50	97.63	90.01	94.70	96.38	97.51	98.32

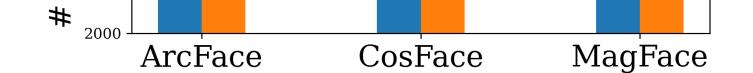
various real face features


iviaking pairs can be **biased**

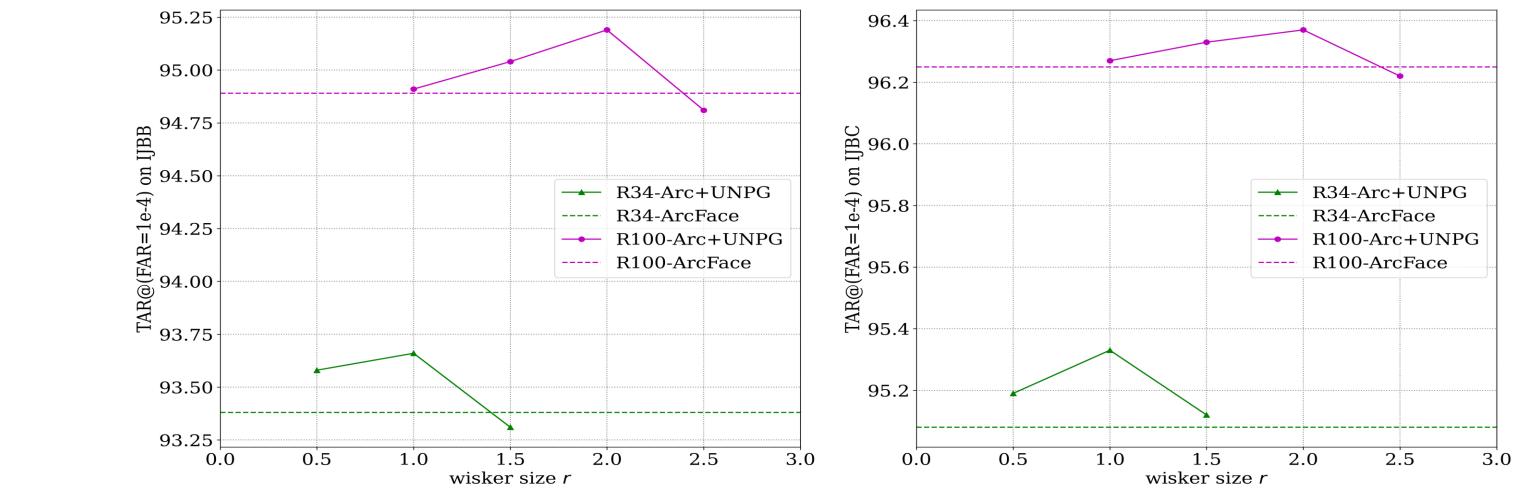
- CLPG and MLPG lack the capability of balanced sampling for WDFS.
- Both are complementary relations, so we unify two methods. \bullet




- The **UNPG** can make up for **"biases"** in MLPG and **"only matched with** weight vectors" in CLPG under the unified view.
- It makes better chances for learning various negative pairs.


Verification accuracy of TAR@FAR on IJB-B and IJB-C. "*" indicates results from \bullet the original paper

03



951

UNPG makes less overlap between negative and positive similarity sets.

Similarities 4000

Overlapping 3000 -500 -

Analysis of scale factor *r* over ResNet34 and ResNet100

- 0 2 4 6 8 10 12 14 16 18 20 # Epochs
- Filtering negative pairs stabilizes the learning process.