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In a methodology section, we explain the geometric interpretation of a feature space to help
understand our UNPG. Subsequently, we demonstrate the backward propagation of unified
loss with UNPG. The experiments section delivers the implementation details and the eval-
uation results with further analysis.

A Methodology
Geometrical Interpretation of Feature Space. We interpret the role of UNPG by associ-
ating a feature space, as shown in Fig. 1. To form WDFS satisfying infS p > supSn, a loss
function should assign a large loss in the feature space with low discriminability, whereas it
should assign a small loss, and vice versa. Many loss functions fail to form WDFS because
of the mismatch between similarity sets of the sampled pairs and all pairs. Fig. 1 (a) depicts
the ideal behavior of a loss function that assigns a large loss in the feature space with low
discriminability for infS p ≫ supSn. In contrast, in Fig. 1 (b), a small loss is assigned in
the feature space with low discriminability because sampled Ŝ p and Ŝn are well-separated.
This problem is alleviated using a similarity score with a margin, as shown in Fig. 1 (c). This
makes Ŝ p informative and worthy of training, as the interval of Ŝ p shifts to the left. However,
it is difficult to generate similarities of extremely hard negative pairs such as cosθ n

min of Fig.
1 (a) owing to the convergence of the class weight vectors to their center. So, small loss is
assigned because they still have the gap between cosθ n

min of Fig. 1 (a) and cos θ̂ n
min of Fig. 1

(c). Fig. 1 (d) shows the effect of UNPG. The interval of Ŝn becomes wider as more negative
pairs are included in Ŝn. They also have the chance to sample the extremely hard negative
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Figure 1: Geometrical interpretation of feature space associated with similarity space. (a) As
ideal behavior of the loss function, it imposes a large loss in feature space with low discrim-
inability. A shading area in the same color represents the target region of the same class.
θ

p
max and θ n

minare the respective angles of max positive and min negative pairs in the feature
space. S p and Sn represent similarity sets. (b) In spite of being equally low discriminative,
a very small loss is given by vanilla loss (e.g., norm-softmax). w1 and w2 are the normalized
weight vectors of classes 1 and 2, while x1 and x2 are the normalized feature vector. θ̂

p
max

and θ̂ n
min represent the angle of max positive and min negative pairs in Ŝ p ⊂S p and Ŝn ⊂Sn,

respectively. (c) Mismatch between S p and Ŝ p is reduced by using a marinal classification
loss (e.g., ArcFace). However, still a small loss is given because of a mismatch between Sn

and Ŝn. (d) Marginal classification loss with UNPG behaves closest to ideal by alleviating
mismatch between Sn and Ŝn.

pairs. Consequently, a large loss is assigned in the feature space with low discriminability,
similar to Fig. 1 (a).
Backward Propagation. The gradients of unified loss equipped with UNPG about xi and
wc are derived as follows:
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(1)

where x̄xxi = xi/∥xi∥ and w̄wwc =wc/∥wc∥. 1 denotes (xi,wc)∈N cl
i appears. Note that the above

back-propagation does not take into account injecting a margin.

B Experiments

B.1 Implementation Details
Datasets. For training, MS1M-V2[4] and K-FACE:T4[11] datasets were employed. For
testing, several benchmark datasets (IJB-B[36], IJBC[ 16], MegaFace[12], LFW[10], CF-
PFP[23], AgeDB-30[18], CALFW[40], and K-FACE:Q1-Q4[11]) were used to evaluate FR
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models. Table 1 summarizes the datasets used in our experiments.

Train # Identities # Images
MS1M-V2[2] 85K 5.8M
K-FACE:T4[1] 370 3.8M

Test # Identities # Images
IJB-B[16] 1,845 76.8K
IJB-C[8] 3,531 148.8K

MegaFace (P)[6] 530 100K
MegaFace (G)[6] 690K 1M

LFW[4] 5,749 13,233
CFPFP[12] 500 7,000

AgeDB-30[10] 568 16,488
CALFW[18] 5,749 12,174

Test[1] # Pairs # Variance
K-FACE:Q1 1,000 Very Low
K-FACE:Q2 10K Low
K-FACE:Q3 10K Middle
K-FACE:Q4 10K High

Table 1: A brief overview of FR datasets. (P) and (G) refer to the probe set the gallery set on
MegaFace, respectively.

Training. For preprocessing, face images were resized to 112×112 and normalized using the
mean (0.485, 0.456, 0.406) and standard deviations (0.229, 0.224, 0.225). For data augmen-
tation, a horizontal flip was applied with a 50% of chance. All experiments were performed
using two NVIDIA-RTX A6000 GPUs with a mini-batch size of 512. ResNet-34 (R34) and
ResNet-100 (R100) were used as backbone models. We re-implemented the state-of-the-art
models: CosFace[14], ArcFace[2], and MagFace[9].

The hyper-parameters used in our experiments were as follows: In ArcFace and CosFace,
scale factor γ = 64 and margin m = 0.5 were set. In MagFace, γ = 64, la = 10,ua = 110, lm =
0.4, lm = 0.8,λg = 35 were used. For K-FACE, SN-pair[5] and circle-loss[13] employed
γ = 64 and γ = 32,m = 0.25, respectively. In MixFace[5], ε = 1e− 22 and m = 0.5 were
set. In MS-loss[15], α = 2,γ = 0.5,β = 50 were used. Triplet loss employed m = 0.5. In
contrastive loss, positive and negative margins were set to 0 and 1, respectively. Finally,
in UNPG, the wisker size r = 1.0 was used with ResNet-34, whereas r = 1.5 or r = 2.0
were used ResNet-100. The stochastic gradient descent (SGD) optimizer was utilized in
conjunction with a cosine annealing scheduler[7] to control the learning rate, which started
from 0.1. The momentum, weight decay, and warm-up epochs were set to 0.9, 0.0005, and 3,
respectively. The maximum number of training epochs was set to 20 for all models, except
that it was set to 25 with MagFace for a fair comparison. The size of the deep feature space
extracted from the backbone model was set to 512.

Test. Cosine similarity was used as a similarity score. Different evaluation metrics were ap-
plied depending on the FR tasks. In the verification task (1:1), verification accuracy using
the best threshold was exploited for a dataset that has a small number of test images with the
same ratio between positive and negative pairs, such as LFW, CFP-FP, AgeDB-30, CALFW,
and CPLFW. Otherwise, TAR@FAR was used on IJB-B, IJB-C, and K-FACE. In the identi-
fication task (1:N) on MegaFace, rank-1accuracy was utilized.
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Method Loss Type LFW CFP-FP Age-DB IJBB IJBC
Contrastive Metric Loss 98.79 81.04 92.01 72.18 76.16

Triplet Metric Loss 98.35 90.79 88.36 32.65 36.86
ArcFace Classification Loss 99.81 97.10 98.06 93.38 95.08

Arc+Contrastive Multi-Objective Loss 99.80 96.78 97.73 93.03 94.86
Arc+Triplet Multi-Objective Loss 99.81 96.79 97.89 93.22 94.79

MixFace (Arc+SN-pair) Multi-Objective Loss 99.53 96.32 95.56 93.22 94.79
Arc+UNPG Unified Loss 99.83 97.15 98.08 93.66 95.33

Table 2: Verification accuracy on LFW, CFP-FP, AgeDB-30, IJBB (1e-4), and IJBC (1e-4)
with ResNet-34 backbone.

Method LFW CFP-FP Age-DB IJB-B IJB-C
1e-5 1e-4 1e-5 1e-4

ArcFace 99.81 97.10 98.06 86.28 93.38 92.21 95.08
Arc+UNPG, semi-hard 99.80 97.35 98 87.25 93.58 92.59 95.20

Arc+UNPG, r = 1.0 99.83 97.15 98.08 88.05 93.66 93.02 95.33

Table 3: Verification accuracy on LFW, CFP-FP, Age-DB, IJBB, and IJBC with ResNet-34
backbone.

Figure 2: Mislabeled positive pair (left) and similarity distribution for 25,784 randomly gen-
erated positive and negative pairs (right). Similarity distribution and the sample of positive
pairs were constructed using Arc+UNPG with ResNet-34 on MS1MV2.

B.2 Analysis

Multi-Objective Loss vs. Unified Loss. The unified loss with UNPG, which combines two
types of pair generation strategies (MLPG and CLPG), is different from the multi-objective
loss, which combines two losses with a mixture weight. As shown in Table 2, the multi-
objective losses such as Arc+Contrastive, Arc+Triplet, and MixFace performed worse than
ArcFace. The unified loss with UNPG achieved the best performance compared to others.
Semi Hard Negative Mining vs. Noise Negative Pair Filtering. Some research[11, 17] ad-
dressed the importance of semi-hard negative mining due to the divergence problem caused
by extremely difficult pairs in pair optimization tasks such as face recognition and image re-
trieval. We modified semi-hard mining methods [11, 17] to apply to our unified loss function
and performed experiments using ArcFace with UNPG on LFW, CFP-FP, AgeDB, IJB-B
and IJB-C.
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Ñml
semi−hard = {(xi,x j)|(yi ̸= y j)∧ (sn

j < inf Ŝ p)}

Table 3 shows that our noise negative pair filtering performed better than the semi-hard
mining.
Why do not use positive pair of metric learning? MS1MV2[2] has erroneous labels be-
cause it is a semi-auto-labeled version of MS-Celeb-1M[3]. As shown in Fig 2, the variance
of the similarity distribution of Ŝ p is very large compared to that of Sn. Also, some of the
existing pairs in the overlap of Ŝ p and Sn have wrong labels. Due to this, we observed that
adopting positive ML pairs lead to a divergence of a loss even using different wisker sizes.
In contrast, a model can tolerate erroneous positive CL pairs by adjusting the class weight
vector wc. Such data characteristics may be a reason for the poor performance of ML in FR.
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