USC Institute for Creative Technologies

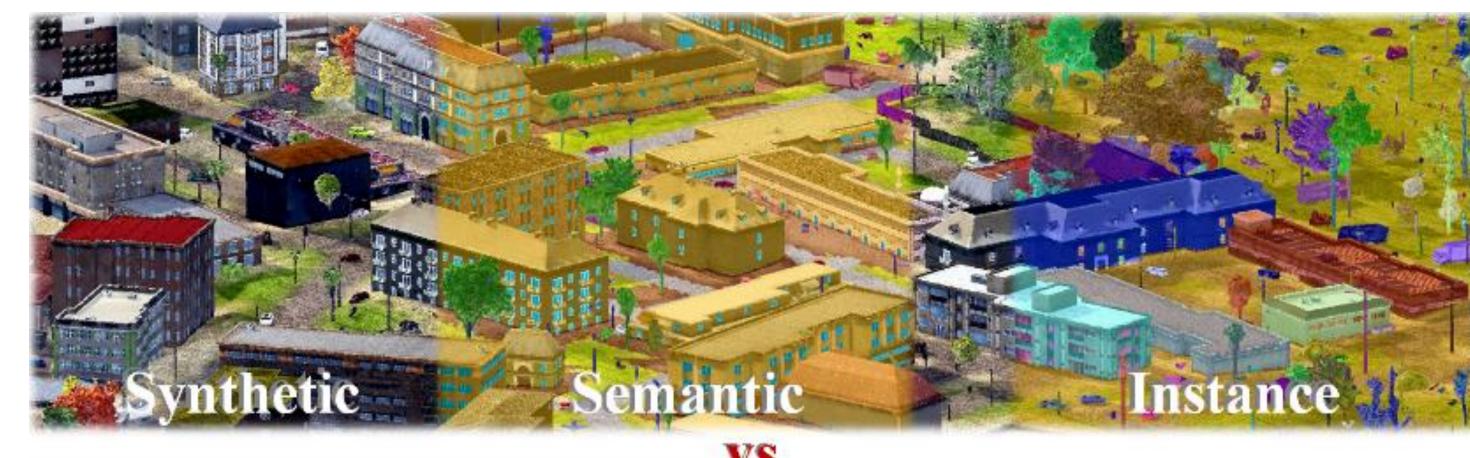
STPLS3D: A Large-Scale Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset

BMVC2022

Meida Chen¹, Qingyong Hu², Zifan Yu³, Hugues Thomas⁴, Andrew Feng¹, Yu Hou⁵, Kyle McCullough¹, Fengbo Ren³, Lucio Soibelman¹ University of Southern California, ²University of Oxford, ³Arizona State University, ⁴University of Toronto, ⁵Carnegie Mellon University

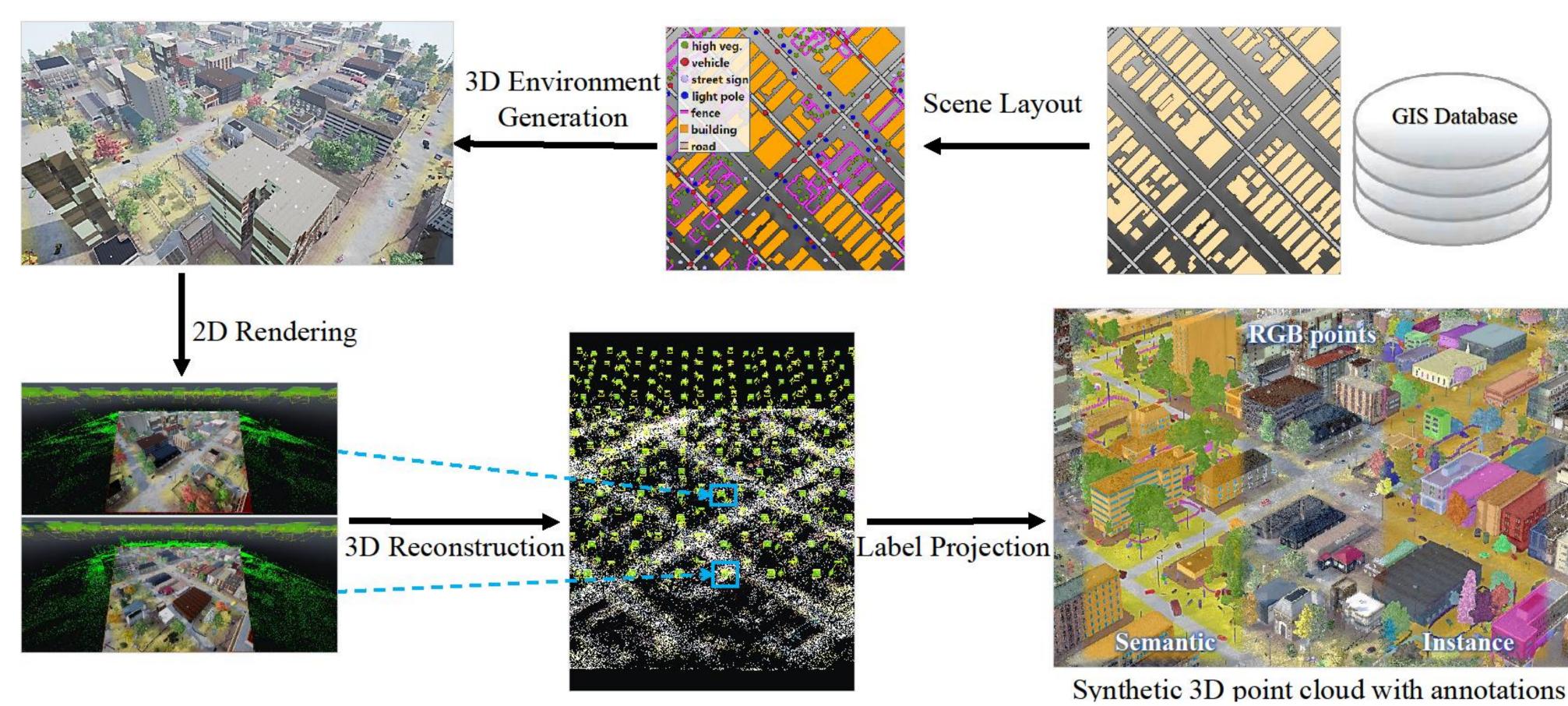
Motivation and Objective

- Deep learning algorithms are data-hungry, especially in the 3D domain.
- This research aims to investigate the possibility of using synthetic photogrammetric data to augment/substitute real-world data for training 3D point cloud segmentation algorithms.



Synthetic data generation pipeline

Input: GIS data (i.e., DSM, building footprints, road vectors.) **Output**: synthetic photogrammetric 3D point cloud with annotations.



- ✓ Procedurally generating scene layouts.
- ✓ Procedurally generating highly detailed 3D building models.
- ✓ Using a large game object and material database.
- ✓ Simulating aerial image collections following real-world setups.
- ✓ Photogrammetric 3D reconstruction using rendered images.

Experiments and results

Semantic segmentation (real vs. synthetic vs. synthetic+real)

Training sets	Mathada	mIoII (0/)	a A aa (07)	Per Class IoU (%)								
	Methods	mIoU (%)	oAcc (%)	Ground	Building	Tree	Car	Light pole	Fence			
	PointTransformer [84]	49.40	85.85	85.23	47.77	76.72	39.51	28.61	18.56			
Real subsets	RandLA-Net [35]	51.84	84.79	88.14	46.88	61.40	48.72	46.04	19.83			
	SCF-Net [22]	53.79	86.66	89.19	53.12	65.28	48.91	46.59	19.63			
	MinkowskiNet [17]	52.85	83.28	82.76	40.30	71.68	47.00	49.33	26.04			
	KPConv [72]	57.80	87.20	86.69	63.41	66.32	46.36	56.08	27.95			
Synthetic subsets	PointTransformer [84]	58.65	92.01	90.42	74.54	85.18	31.76	42.36	27.67			
	RandLA-Net [35]	59.38	91.33	90.15	69.20	82.21	50.13	40.36	24.20			
	SCF-Net [22]	58.82	90.49	89.53	62.39	81.55	52.99	44.10	22.36			
	MinkowskiNet [17]	56.17	90.55	90.74	66.11	78.63	36.86	36.41	28.26			
	KPConv [72]	61.92	92.35	91.41	68.31	86.00	48.97	51.99	24.82			
Real+Synthetic	PointTransformer [84]	62.14	91.96	89.74	74.79	84.73	45.10	46.75	31.72			
	RandLA-Net [35]	61.38	92.31	91.25	68.71	84.35	55.04	43.30	23.83			
	SCF-Net [22]	61.89	92.10	90.99	68.69	84.99	55.58	45.36	25.71			
	MinkowskiNet [17]	62.59	93.16	91.66	74.70	87.97	48.80	43.95	28.49			
	KPConv [72]	65.01	93.03	91.86	71.44	87.12	54.77	55.39	29.48			

Instance segmentation baselines

	Metric	mean (%)	Build.	Low Veg.	Medium Veg.	HighVeg.	Vehicle	Truck	Aircraft	Military Veh.	Bike	Motorcycle	LightPole	StreetSign	Clutter	Fence
HAIS[16]	AP	35.1	66.8	20.9	17.6	23.2	75.7	51.9	42.6	31.1	7.4	50.8	47.0	8.3	22.6	25.7
	AP50	46.7	73.9	35.7	25.0	29.2	86.9	61.3	65.2	39.2	17.0	69.0	62.9	13.7	27.9	46.5
	AP25	52.8	75.9	46.8	31.9	32.1	89.0	66.0	72.0	44.5	22.1	75.4	68.1	15.0	31.7	68.4
PointGroup[41]	$-\overline{AP}$	23.3	60.0	11.6	10.7	19.2	58.7	39.8	27.6	$21.\overline{2}$	2.2	12.0	23.7	8.1	13.9	18.1
	AP50	38.5	70.4	28.3	19.0	25.4	83.9	57.9	47.9	35.3	7.9	44.0	46.8	14.7	19.6	38.4
	AP25									42.3						

Urban3D 202

Workshop

Project page: www.stpls3d.com

CdaLab

Evaluation server

Demo

Released datasets

62 Synthetic datasets:

- 46,281 rendered images
- 16 km² coverage
- Up to 18 semantic labels with instance annotations

4 real-world datasets:

- 16,376 aerial images
- 1.27 km² coverage
- 6 semantic labels

