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Abstract
Giving machines the ability to imagine possible new objects or scenes from linguistic

descriptions and produce their realistic renderings is arguably one of the most challenging
problems in computer vision. Recent advances in deep generative models have led to new
approaches that give promising results towards this goal. In this paper, we introduce a
new method called DiCoMoGAN for manipulating videos with natural language, aiming
to perform local and semantic edits on a video clip to alter the appearances of an object
of interest. Our GAN architecture allows for better utilization of multiple observations
by disentangling content and motion to enable controllable semantic edits. To this end,
we introduce two tightly coupled networks: (i) a representation network for constructing
a concise understanding of motion dynamics and temporally invariant content, and (ii) a
translation network that exploits the extracted latent content representation to actuate the
manipulation according to the target description. Our qualitative and quantitative eval-
uations demonstrate that DiCoMoGAN significantly outperforms existing frame-based
methods, producing temporally coherent and semantically more meaningful results.

1 Introduction
Making desired edits on an image or video using tools like Adobe Photoshop, Adobe Pre-
miere Pro and Apple Final Cut Pro is quite challenging and requires extensive training and
experience. Thanks to the proliferation of deep learning, some user-friendly solutions are
proposed for editing images [33]. Yet, democratizing the video editing process to improve
accessibility and empower the non-experts still requires rethinking modern architectures.

Towards this end, we set off to ask: Can we learn to semantically manipulate videos
through natural language descriptions in a temporally consistent way? (c.f. Fig. 1) The ex-
isting literature approaches this problem on a frame-by-frame basis applying minimal nec-
essary modifications specified by the input text, disjointly to the each and every input frame.
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Input video sequence

Target description:  Shift yellow dress with short sleeves

Generated output sequence

Figure 1: Text-based video manipulation. Given a video sequence and a target description,
our DiCoMoGAN model generates a temporally coherent output sequence, carrying out the
necessary structural changes while preserving the attributes not referred in the text (e.g. hair
style, identity), and does this without any extra guidance like semantic layout information.

Almost all of the image editing methods use encoder-decoder architectures [14, 33, 34, 41,
44, 46, 61] and employ adversarial learning strategies [26, 30] to provide the agreement
between the resulting images and the target text and to generate photo-realistic outcomes.
However, performing language-driven edits on videos requires models to not only under-
stand the frame content but also be aware of the global video context and its temporal uni-
directionality. Moreover, a harmonious editing demands the target descriptions to be related
not only to static frames but to the entire video to achieve good gestalt.

To achieve all these, we propose a new data-driven text based video manipulation model
called DiCoMoGAN. The key to our approach is a unified network model consisting of a
representation network (RepNet) and a translation network (TraNet), which jointly learn to
disentangle video content and motion dynamics and to perform the text-specified edits on
a given video sequence. Under the assumption that textual description is strongly related
to appearance, we create a structured latent space composed of text relevant, text irrelevant
and dynamic subspaces (c.f. Fig. 2). To ensure the former, we steer the latent subspace to be
shared between global video descriptor and the text features, encoded by CLIP [44]. We then
use the features from this structured latent space along with text features to condition multi-
feature modulation (MFMOD) blocks. We train this integrated architecture via a multi-task
loss function in an end to end manner to encode scene specific transformations effectively
while capturing the relationships between the spatiotemporal data and the text input. Our
experiments on the standard 3D Shapes benchmark [5] as well as on our new dataset Fash-
ion Videos demonstrate that DiCoMoGAN can produce high quality, temporally consistent
videos faithfully reflecting the intentions stated in the target descriptions. In summary, our
contributions are as follows: (1) Our representation network, RepNet, implements a neural
architecture that explicitly enforces the separation of static and dynamic features via a set-
based b -VAE model [23] equipped with a Latent ODE [49]. (2) Our translation network,
TraNet, follows an encoder-decoder architecture which is guided by the representation net-
work through a novel multi-feature modulation block called MFMOD where the residual
activation maps are modulated based on both the given textual description and the disentan-
gled content code. (3) To test the capabilities of our model in a more realistic setting, we
collect a new dataset containing Fashion Videos with the related textual descriptions.
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2 Related Work

Disentangled representations. The aim of unsupervised disentangled representation learn-
ing is to discover underlying factors of variation in a training data, in which each dimension
encodes a unique and semantically meaningful aspect of the data [4]. To this end, most of
the existing approaches are based on VAEs [32, 48] with slight modi�cations in the VAE
objective, such asb-VAE [23], FactorVAE [31]. Similarly, some prior work tweak the ob-
jective of GANs [19] to achieve disentanglement,e.g. InfoGAN [8], IB-GAN [27]. Locatello
et al. [37] showed that unsupervised learning of disentangled generative factors can not be
achieved without strong inductive biases on both the models and the data, which can be al-
leviated using weak supervision or a few labeled training samples [54]. Key to the success
of our model, in our work we especially focus on disentangling motion and content, which
has been previously studied in a fully unsupervised setting [11], or using action/attribute
labels [21]. But we instead utilize natural language descriptions as weak supervision.

VAE-GAN hybrids . GANs are superior to VAEs in terms of visual quality, but VAEs pro-
vide better disentangled representations. There is a line of research that explores combining
VAE and GAN frameworks, ALI [15], BiGAN [13], IntroVAE [24], to name a few. The
promise of these so-called hybrid approaches is to combine the advantages of both models,
while providing a much stable training and improved diversity in the generated samples.

Video synthesis. Video synthesis aims at generating temporally coherent video clips either
from scratch [11, 17, 36, 40, 60, 63], or according to a single image or a short sequence of
images [1, 12, 50, 55, 58]. Motivated by these works, there are also some efforts to allow
the users to control the video generation process by introducing natural text [3, 35, 39, 43]
or spoken language [6, 9, 53, 66, 67] as an additional input.

Language based image manipulation. In text-to-image synthesis, the goal is to gener-
ate an image with a natural language description [46, 62, 65, 68]. On the other hand,
semantic image manipulation aka language guided image editing models [14, 33, 34, 41]
aim at modifying a source image according to a given textual description summarizing the
desired object characteristics. SISGAN [14] involves a text-conditioned encoder-decoder
architecture. TAGAN [41] learns to disentangle different semantic attributes of the target
object during training by considering a text-adaptive discriminator. ManiGAN [33] and
LightweightGAN [34], on the other hand, utilize text-image combination modules, which
are used to match semantic attributes with certain words in the given descriptions, along
with explicit word-level discriminators to improve the quality of the results. The recently
proposed TediGAN [61], Latent Transformer [64], and StyleCLIP [44] models are also ca-
pable of performing language-driven edits on a given image, but they all require a StyleGAN
model pre-trained for a speci�c domain (e.g. faces), which is hard to train for less structured
domains like full body images. Recently, Jiang et al. [28] propose a new language-guided
editing model speci�cally designed for performing global edits such as changing brightness
or color tone of an image.

Language based video manipulation. Our task of video-editing using natural language
descriptions is a relatively new one. There are two studies worth mentioning which are con-
current to this work: (i) [18] tackles a similar problem by proposing a transformer-based
architecture, but they did not make their implementation freely available; (ii) [2] presents a
StyleGAN3-based video-editing framework, but, it only considers manipulations based on
a single attribute. The latter belongs to the family of GAN-inversion based methods which
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Figure 2:Schematic illustration of our DiCoMoGAN model. DiCoMoGAN consists of a
representation network (RepNet) and a translation network (TraNet) trained in a harmonious
manner. While the former aims to disentangle motion and content by a set-based formulation
combining VAEs, latent ODEs and set operations, the latter takes advantage of the extracted
latent features to better guide the manipulation by employing a conditional normalization
method which we call multi-feature modulation (MFMOD).

uses the latent space of a pretrained StyleGAN model for editing purposes, where the exist-
ing methods focus on distinct domains such as aligned faces, as the style-based generators
do not work well on unstructured datasets. Note that while inversion constitutes a sensible
research direction for GANs, inverting diffusion models without signi�cant distortion re-
mains a challenge. Exploring these directions is future work. Nonetheless, our approach and
concept of disentangled video editing can be used regardless of the backbone architectures.

3 DiCoMoGAN

Problem setting. We consider the problem of manipulating a given input video according
to a provided textual description. Inputs to our text-based video manipulation approach,
called DiCoMoGAN, are a short video clip of a single object and a target text description
summarizing the object's new look. We represent the source video as an image sequence
denoted byX = ( xi 2 R3� H� W)N

i= 1, with i being the frame index andN indicating the total
number of frames. Our goal is to perform seamless and semantically meaningful edits on
each video framexi to re�ect what is being described in the target textdesc, and accordingly
generate an output sequenceY = ( yi)N

i= 1 of the same spatial dimensions as the input – with
the desired look. Our model carries this out by:
1. a representation network to learn a disentangled latent space in which static and dy-

namic semantic scene characteristics are encoded independently,

2. atranslation network capable of transferring the target look stated in the textual descrip-
tion to the source video in a truthful and temporally coherent manner, and

3. unifying (1) and (2) with acombined neural architecturewhere the two networks are
trained simultaneously in an end-to-end manner.

In what follows, we describe DiCoMoGAN in detail, following the structure shown in Fig. 2.
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3.1 Network Architecture

Representation network (RepNet). Unlike prior work [14, 41] focusing on language-driven
image edits, our aim is to perform edits on short video clips. Thus, in our formulation,
capturing the intrinsic characteristics of the scene and the object depicted in the source video
plays a key role. As a remedy, we design RepNet for the purpose of extracting a disentangled
representation of the input video from the complementary video framesf xig. To this end,
we employ ab-VAE architecture [23] enriched with a Latent ODE [49] to encode an input
videoX in a latent space. In particular, we split the latent space into two parts as static and
dynamic: z =

�
zST zdyn

�
. Static latent codeszST do not change across consecutive frames

and encode properties like object color and identity, etc. Dynamic codeszdyn are steered
by the Latent ODE and encode characteristics that smoothly vary across frames like pose,
orientation. Such explicit architecture design coupled with respective loss functions (to be
precised later) builds the appropriate inductive bias, encoding distinct features by certain
dimensions of the latent space.

The main part of RepNet is an image encoder networkqf including CNN layers, a GRU
module and a Neural ODE [7] which is responsible for extracting dynamic latent codes. We
assume that RepNet takes a set of framesf x jgK

j= 0 at timesf t jgK
j= 0, whereK(K < N) denotes

the number of frames irregularly sampled from the input video clip. Its convolutional layers
encode each observation individually to a feature map, resulting in the setf h jg

tK
j= t0

.
Inspired by [47], we disentangle the motion dynamics from appearance (content). To

obtain thestatic, i.e.non-time varying latent codes, we �rst max-pool a subspace of those
hidden features to get a permutation invariant representationĥST, which is then mapped
to a static latent codezST through a linear layer. Note,zST is shared among all the input
video frames and carries the global context. Dynamic codes are obtained by feeding the
hidden features in the remaining subspace to a GRU module in reverse order with time gaps
Dt = ti � ti� 1 according to time stamps (tK > tK� 1 > ::: > t0). GRU module produces a
dynamic hidden featurêhdyn

t0 at t0 using the update rule as given by:

ĥdyn
ti� 1

= GRU(ĥdyn
t ;Dt;hti� 1) ; (1)

A linear layer then mapŝhdyn
t0 to a dynamic latent codezdyn

t0 . Once the dynamic latent code

zdyn
t0 is calculated fort0, a Neural ODE functionfODE is learned to predict dynamic latent

codeszdyn
t of the input video at all time stampst = t0; t1; :::; tK using an ODE solver:

[zdyn
t0 ;zdyn

t1 ; :::zdyn
tK ] = ODESolve( fODE;zdyn

t0 ; (t0; t1; :::; tK)) (2)

The �nal latent codezti for an input video at time stepti is built up by concatenating the

calculated static and dynamic latent vectors aszti =
h
zST zdyn

ti

i
. From here on, we omit time

subscripts whenever possible for notational convenience,i.e. z for zti .
Our task requires learning to make local structural changes depending on the input text

description like completely replacing an out�t with a new one. As such, text irrelevant
regions must be preserved while performing required changes. Hence, we introduce a modi-
�ed b-VAE to learn to pass only text irrelevant codes to TraNet as condition. To this end, we
split zST into text relevantztr andtext irrelevantzti parts. To ensure better disentanglement
in the latent space, we jointly letztr live in the space of text featuresi.e. zdesc, whose details
will be precised in Sec. 3.2. Altogether, we writez0=

�
ztr zti zdyn

�
representing the video
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frame atti . This representation aggregates information from multiple frames and is informed
about the temporal dynamics. This cue is key in guiding TraNet in manipulating the source
frames according to the target text. In what follows, we pass the text irrelevant latent codes
zcont =

�
zti zdyn

�
to TraNet as the content condition.

Translation network (TraNet) . As argued before, guiding the manipulation process based
only on the target text is suboptimal since the textual description usually carries little in-
formation about which image regions to keep unchanged. Hence, we design TraNet as an
encoder-decoder network with multiple conditioned residual blocks resembling a combi-
nation of pix2pixHD [59] and Semi-StyleGAN [42]. The latent motion and static codes
extracted from multiple frames help alleviating this by bringing additional conditioning.

Figure 3: MFMOD block. The
proposed conditional normalization
scheme modulates residual activa-
tion maps based on text and content
code by learning optimal modulation
parameters and blending weights.

TraNet uses a special conditional normalization
method, which we callmulti-feature modulation
(MFMOD), that modulates the residual feature ac-
tivation maps based on both text and content codes
derived from RepNet. It learns optimum weights for
each of these two conditions to perform feature mod-
ulation in an harmonious manner (c.f. Fig. 3).

For a batch ofN samples, let the activation
map before theith MFMOD block bef i 2 RCi � Hi � Wi

whereCi is the number of feature map channels and
Hi andWi are the spatial dimensions. The text con-
dition wdesc2 R512 is obtained by the text encoder
of the pretrained CLIP model [45]. For the content
latentzcont, however, we employ a mapping network
fmap(a shallow subnetwork composed of 4 fully con-
nected layers) to mapzcont to a higher-dimensional
vector wcont 2 R256. Our proposed normalization
scheme can be interpreted as a special AdaIN op-
eration [25] with an adaptive multi-feature blending
before the activation feature modulation (c.f. Fig. 3).
The normalized activation value at site(n 2 N;c 2
Ci ;y 2 Hi ;x 2 Wi) is given by

�
a igi

c;y;x(wdesc) + ( 1� a i)y i
c;y;x(wcont)

� hi
n;c;y;x� mi

c

s i
c

+ bir i
c;y;x(wdesc) + ( 1� bi)h i

c;y;x(wcont) (3)

where f i
n;c;y;x is the preactivation,mi

c, s i
c are the mean and the standard deviation of the

activations in the channelc given by:

mi
c =

1
NHiWi å

n;y;x
f i
n;c;y;x; s i

c =

s
1

NHiWi å
n;y;x

� �
f i
n;c;y;x

� 2 � (mi
c)

2
�

;

with gi
c;y;x, r i

c;y;x, y i
c;y;x, h i

c;y;x respectively denoting the learned modulation parameters for
the description and content conditionswdescandwcont. Note that the blending valuesa i and
bi are not �xed, but learned during the training phase.

After multi-conditional residual blocks, the last (conditioned) feature map is fed to the
decoder, which consists of several convolutional transpose layers to upsample it to the orig-
inal resolution to obtain the manipulated framey. In the decoder, we also apply instance
normalization in all convolutional transpose layers except the last layer. We use ReLU ac-
tivation in all convolutional and convolutional transpose layers in all parts of the network.
Please refer to the supplementary material for details.


