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Abstract

Giving machines the ability to imagine possible new objects or scenes from linguistic
descriptions and produce their realistic renderings is arguably one of the most challenging
problems in computer vision. Recent advances in deep generative models have led to new
approaches that give promising results towards this goal. In this paper, we introduce a
new method called DiCoMoGAN for manipulating videos with natural language, aiming
to perform local and semantic edits on a video clip to alter the appearances of an object
of interest. Our GAN architecture allows for better utilization of multiple observations
by disentangling content and metion to enable controllable semantic edits. To this end,
we introduce two tightly coupled networks: (i) a representation network for constructing
a concise understanding of motion dynamics and temporally invariant content, and (ii) a
translation network that exploits the extracted latent content representation to actuate the
manipulation according to the target description. Our qualitative and quantitative eval-
vations demonstrate that DIiCOMoGAN significantly outperforms existing frame-based
methods, producing temporally coherent and semantically more meaningful results.

1 Introduction

Making desired edits on an image or video using tools like Adobe Photoshop, Adobe Pre-
miere Pro and Apple Final Cut Pro is quite challenging and requires extensive training and
experience. Thanks to the proliferation of deep learning, some user-friendly solutions are
proposed for editing images [33]. Yet, democratizing the video editing process to improve
accessibility and empower the non-experts still requires rethinking modern architectures.
Towards this end, we set off to ask: Can we learn to semantically manipulate videos
through natural language descriptions in a temporally consistent way? (c.f. Fig. 1) The ex-
isting literature approaches this problem on a frame-by-frame basis applying minimal nec-
essary modifications specified by the input text, disjointly to the each and every input frame.
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Figure 1: Text-based video manipulation. Given a video sequence and a target description,
our DiCoMoGAN model generates a temporally coherent output sequence, carrying out the
necessary structural changes while preserving the attributes not referred in the text (e.g. hair
style, identity), and does this without any extra guidance like semantic layout information.

Almost all of the image editing methods use encoder-decoder architectures [14, 33, 34, 41,
44, 46, 61] and employ adversarial learning strategies [26, 30] to provide the agreement
between the resulting images and the target text and to generate photo-realistic outcomes.
However, performing language-driven edits on videos requires models to not only under-
stand the frame content but also be aware of the global video context and its temporal uni-
directionality. Moreover, a harmonious editing demands the target descriptions to be related
not only to static frames but to the entire video to achieve good gestalt.

To achieve all these, we propose a new data-driven text based video manipulation model
called DiCoMoGAN. The key to our approach is a unified network model consisting of a
representation network (RepNet) and a translation network (TraNet), which jointly learn to
disentangle video content and motion dynamics and to perform the text-specified edits on
a given video sequence. Under the assumption that textual description is strongly related
to appearance, we create a structured latent space composed of text relevant, text irrelevant
and dynamic subspaces (c.f. Fig. 2). To ensure the former, we steer the latent subspace to be
shared between global video descriptor and the text features, encoded by CLIP [44]. We then
use the features from this structured latent space along with text features to condition multi-
feature modulation (MFMOD) blocks. We train this integrated architecture via a multi-task
loss function in an end to end manner to encode scene specific transformations effectively
while capturing the relationships between the spatiotemporal data and the text input. Our
experiments on the standard 3D Shapes benchmark [5] as well as on our new dataset Fash-
ion Videos demonstrate that DiCoMoGAN can produce high quality, temporally consistent
videos faithfully reflecting the intentions stated in the target descriptions. In summary, our
contributions are as follows: (1) Our representation network, RepNet, implements a neural
architecture that explicitly enforces the separation of static and dynamic features via a set-
based B-VAE model [23] equipped with a Latent ODE [49]. (2) Our translation network,
TraNet, follows an encoder-decoder architecture which is guided by the representation net-
work through a novel multi-feature modulation block called MFMOD where the residual
activation maps are modulated based on both the given textual description and the disentan-
gled content code. (3) To test the capabilities of our model in a more realistic setting, we
collect a new dataset containing Fashion Videos with the related textual descriptions.
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2 Related Work

Disentangled representations. The aim of unsupervised disentangled representation learn-
ing is to discover underlying factors of variation in a training data, in which each dimension
encodes a unique and semantically meaningful aspect of the data [4]. To this end, most of
the existing approaches are based on VAEs [32, 48] with slight modifications in the VAE
objective, such as -VAE [23], FactorVAE [31]. Similarly, some prior work tweak the ob-
jective of GANSs [19] to achieve disentanglement, e.g. InfoGAN [8], IB-GAN [27]. Locatello
et al. [37] showed that unsupervised learning of disentangled generative factors can not be
achieved without strong inductive biases on both the models and the data, which can be al-
leviated using weak supervision or a few labeled training samples [54]. Key to the success
of our model, in our work we especially focus on disentangling motion and content, which
has been previously studied in a fully unsupervised setting [11], or using action/attribute
labels [21]. But we instead utilize natural language descriptions as weak supervision.

VAE-GAN hybrids. GANSs are superior to VAEs in terms of visual quality, but VAEs pro-
vide better disentangled representations. There is a line of research that explores combining
VAE and GAN frameworks, ALI [15], BiIGAN [13], IntroVAE [24], to name a few. The
promise of these so-called hybrid approaches is to combine the advantages of both models,
while providing a much stable training and improved diversity in the generated samples.

Video synthesis. Video synthesis aims at generating temporally coherent video clips either
from scratch [11, 17, 36, 40, 60, 63], or according to a single image or a short sequence of
images [1, 12, 50, 55, 58]. Motivated by these works, there are also some efforts to allow
the users to control the video generation process by introducing natural text [3, 35, 39, 43]
or spoken language [6, 9, 53, 66, 67] as an additional input.

Language based image manipulation. In text-to-image synthesis, the goal is to gener-
ate an image with a natural language description [46, 62, 65, 68]. On the other hand,
semantic image manipulation aka language guided image editing models [14, 33, 34, 41]
aim at modifying a source image according to a given textual description summarizing the
desired object characteristics. SISGAN [14] involves a text-conditioned encoder-decoder
architecture. TAGAN [41] learns to disentangle different semantic attributes of the target
object during training by considering a text-adaptive discriminator. ManiGAN [33] and
LightweightGAN [34], on the other hand, utilize text-image combination modules, which
are used to match semantic attributes with certain words in the given descriptions, along
with explicit word-level discriminators to improve the quality of the results. The recently
proposed TediGAN [61], Latent Transformer [64], and StyleCLIP [44] models are also ca-
pable of performing language-driven edits on a given image, but they all require a StyleGAN
model pre-trained for a specific domain (e.g. faces), which is hard to train for less structured
domains like full body images. Recently, Jiang et al. [28] propose a new language-guided
editing model specifically designed for performing global edits such as changing brightness
or color tone of an image.

Language based video manipulation. Our task of video-editing using natural language
descriptions is a relatively new one. There are two studies worth mentioning which are con-
current to this work: (i) [18] tackles a similar problem by proposing a transformer-based
architecture, but they did not make their implementation freely available; (ii) [2] presents a
StyleGAN3-based video-editing framework, but, it only considers manipulations based on
a single attribute. The latter belongs to the family of GAN-inversion based methods which
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Figure 2: Schematic illustration of our DiCoMoGAN model. DiCoMoGAN consists of a
representation network (RepNet) and a translation network (TraNet) trained in a harmonious
manner. While the former aims to disentangle motion and content by a set-based formulation
combining VAEs, latent ODEs and set operations, the latter takes advantage of the extracted
latent features to better guide the manipulation by employing a conditional normalization
method which we call multi-feature modulation (MFMOD).

uses the latent space of a pretrained StyleGAN model for editing purposes, where the exist-
ing methods focus on distinct domains such as aligned faces, as the style-based generators
do not work well on unstructured datasets. Note that while inversion constitutes a sensible
research direction for GANs, inverting diffusion models without significant distortion re-
mains a challenge. Exploring these directions is future work. Nonetheless, our approach and
concept of disentangled video editing can be used regardless of the backbone architectures.

3 DiCoMoGAN

Problem setting. We consider the problem of manipulating a given input video according
to a provided textual description. Inputs to our text-based video manipulation approach,
called DiCoMoGAN, are a short video clip of a single object and a target text description
summarizing the object’s new look. We represent the source video as an image sequence
denoted by X = (x; € R3*# XW)?’: 1» with 7 being the frame index and N indicating the total
number of frames. Our goal is to perform seamless and semantically meaningful edits on
each video frame x; to reflect what is being described in the target text desc, and accordingly
generate an output sequence ¥ = (yi)ﬁ\’: | of the same spatial dimensions as the input — with
the desired look. Our model carries this out by:

1. a representation network to learn a disentangled latent space in which static and dy-

namic semantic scene characteristics are encoded independently,

2. atranslation network capable of transferring the target look stated in the textual descrip-
tion to the source video in a truthful and temporally coherent manner, and

3. unifying (1) and (2) with a combined neural architecture where the two networks are
trained simultaneously in an end-to-end manner.
In what follows, we describe DiCoMoGAN in detail, following the structure shown in Fig. 2.
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3.1 Network Architecture

Representation network (RepNet). Unlike prior work [14, 41] focusing on language-driven
image edits, our aim is to perform edits on short video clips. Thus, in our formulation,
capturing the intrinsic characteristics of the scene and the object depicted in the source video
plays a key role. As a remedy, we design RepNet for the purpose of extracting a disentangled
representation of the input video from the complementary video frames {x;}. To this end,
we employ a 3-VAE architecture [23] enriched with a Latent ODE [49] to encode an input
video X in a latent space. In particular, we split the latent space into two parts as static and
dynamic: z = [25T z%"]. Static latent codes 25T do not change across consecutive frames
and encode properties like object color and identity, etc. Dynamic codes z¥" are steered
by the Latent ODE and encode characteristics that smoothly vary across frames like pose,
orientation. Such explicit architecture design coupled with respective loss functions (to be
precised later) builds the appropriate inductive bias, encoding distinct features by certain
dimensions of the latent space.

The main part of RepNet is an image encoder network gy including CNN layers, a GRU
module and a Neural ODE [7] which is responsible for extracting dynamic latent codes. We
assume that RepNet takes a set of frames {x j} "~ attimes {t;}X j—0» Where K(K < N)) denotes
the number of frames irregularly sampled from the input video clip. Its convolutional layers
encode each observation individually to a feature map, resulting in the set {h;}’ i=t"

Inspired by [47], we disentangle the motion dynamics from appearance (content). To
obtain the static, i.e.non-time varying latent codes, we first max-pool a subspace of those
hidden features to get a permutation invariant representation hST, which is then mapped
to a static latent code z5T through a linear layer. Note, z5T is shared among all the input
video frames and carries the global context. Dynamic codes are obtained by feeding the
hidden features in the remaining subspace to a GRU module in reverse order with time gaps
At = t; — t;_1 according to time stamps (fx > tg—1 > ... > t9). GRU module produces a
dynamic hidden feature ﬁ?oyn at 7o using the update rule as given by:

b = GRU(B™, A1 b, ), (1)

A linear layer then maps ﬁg)y to a dynamic latent code z, . Once the dynamic latent code

dyn

z; is calculated for 79, a Neural ODE function fopg is learned to predict dynamic latent

codes z?yn of the input video at all time stamps ¢ = fy, 1, ...,fx using an ODE solver:
dyn _dyn dyn
[Zt() Ly ] ODESOlve(fODEa Zto (t()a I, .. tK)) 2

The final latent code z;, for an input video at time step #; is built up by concatenating the
calculated static and dynamic latent vectors as z,, = [ZST zgy“} . From here on, we omit time

subscripts whenever possible for notational convenience, i.e. z for z;,.

Our task requires learning to make local structural changes depending on the input text
description like completely replacing an outfit with a new one. As such, text irrelevant
regions must be preserved while performing required changes. Hence, we introduce a modi-
fied B-VAE to learn to pass only text irrelevant codes to TraNet as condition. To this end, we
split z5T into text relevant 7 and text irrelevant z% parts. To ensure better disentanglement
in the latent space, we jointly let z" live in the space of text features i.e. z%¢°, whose details
will be precised in Sec. 3.2. Altogether, we write z' = [z‘r A zdyn] representing the video
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frame at ;. This representation aggregates information from multiple frames and is informed
about the temporal dynamics. This cue is key in guiding TraNet in manipulating the source
frames according to the target text. In what follows, we pass the text irrelevant latent codes
2% = [z 2%"] to TraNet as the content condition.

Translation network (TraNet). As argued before, guiding the manipulation process based

only on the target text is suboptimal since the textual description usually carries little in-

formation about which image regions to keep unchanged. Hence, we design TraNet as an

encoder-decoder network with multiple conditioned residual blocks resembling a combi-

nation of pix2pixHD [59] and Semi-StyleGAN [42]. The latent motion and static codes

extracted from multiple frames help alleviating this by bringing additional conditioning.
TraNet uses a special conditional normalization

method, which we call multi-feature modulation  contentcode z* [ﬁ)mi}{\]gfromJ
. epNet,
(MFMOD), that modulates the residual feature ac- @i@ '

features
f£i ¢ ROXHixWi

tivation maps based on both text and content codes Mapping network
derived from RepNet. It learns optimum weights for

MFMOD Block

each of these two conditions to perform feature mod- =
ulation in an harmonious manner (c.f. Fig. 3).
For a batch of N samples, let the activation features

pit! ¢ RO X Hirx Wity

map before the i"* MEMOD block be fi € RC>*HixWi
where C; is the number of feature map channels and
H; and W; are the spatial dimensions. The text con-
dition wd¢¢ € R312 is obtained by the text encoder oot
of the pretrained CLIP model [45]. For the content Encoder
latent z°°", however, we employ a mapping network et
fmap (a shallow subnetwork composed of 4 fully con- ~ “*"*"
nected layers) to map z°°™ to a higher-dimensional . .

vector w* € R?3®, Our proposed normalization Figure 3: MFMOD block. =~ The
scheme can be interpreted as a special AdaIN op- . .
eration [25] with an adaptive multi-feature blending S,Cheme modulates residual activa-
before the activation feature modulation (c.f. Fig. 3). tion maps bas.ed on Fext and cont.ent
The normalized activation value at site (n € N,c € code by learning optimal modulation
C;,y € H;,x € W;) is given by parameters and blending weights.

MFMOD Block

proposed conditional normalization

j i By ey =M i i
(ai'}’é%x(wdesc) + (] - ai)‘/’é,y,x(wwﬂt)) Tﬂ + ﬁipc.y7x(wdeSC) + (1 - ﬁi)nc'7y,x(wC0Ht) 3)

where f} . is the preactivation, u/, o/ are the mean and the standard deviation of the
activations in the channel ¢ given by:

. 1 . . 1 . .

:urf = W lg,xf;;,c.y,xv O-Cl‘ = \/I\W n;x ((flé,c.,y,x)z - (;ué)z)a
with yf.?y’x, pf.o,’x, l//f.’y_’x, niy’x respectively denoting the learned modulation parameters for
the description and content conditions Wgese and Weone. Note that the blending values o; and
Bi are not fixed, but learned during the training phase.

After multi-conditional residual blocks, the last (conditioned) feature map is fed to the
decoder, which consists of several convolutional transpose layers to upsample it to the orig-
inal resolution to obtain the manipulated frame y. In the decoder, we also apply instance
normalization in all convolutional transpose layers except the last layer. We use ReL.U ac-
tivation in all convolutional and convolutional transpose layers in all parts of the network.
Please refer to the supplementary material for details.
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3.2 Training

Our representation and translation networks, RepNet and TraNet, are trained jointly in an
end to end manner, by minimizing a non-convex, multi-task loss:

L= ﬁRepNet + Z/T‘CTraNetv £RepNet = (Crec + Crec') /2 - ﬁ ([%{ + ‘Cil(}f) (4)

LtraNet = min | max Legan +AL1 L1 + AuLunsup
TraNet \ Discr

where A1 = 1,Ay = 0.5, Ay = 1 are set empirically. We now define each of the loss terms.

Disentanglement losses £ and £3T. We enforce the latent code z to disentangle latent

factors of variation. This is measured by computing the KL-divergence individually for static
and dynamic distributions:

1 d d d
R O N L I N A CH CASI )
t=0 o 1

Reconstruction losses L. and L. During training z;, is passed to the image decoder pg
to reconstruct the input video frame at time #; from its latent code. This reconstruction loss
in our B-VAE objective reads:

Liec = IE:q¢,(z|x) [10g Do (X|Z)} o)

We also introduce an auxiliary text encoder Ecyp, whose output is aligned with text relevant
code z" creating a joint latent space. From the given textual description, text features wds
are extracted by first using the text encoder Ecrp of the off-the-shelf CLIP model [45] and
then feeding these CLIP embeddings to a series of linear projects to obtain a lower dimen-
sional text representation z4°* that is the same dimension with that of z*. We then define an
additional reconstruction loss for learning to specify text relevant part of latent space as:

Liec = Eq(,,(z\x) [IOgPG(Xlzl)] ’ (6)

This extra supervision enforces text relevant subspace of the latent code to be aligned with the
CLIP space, improving the disentanglement ability of RepNet. Note that the image decoder
pe and the auxiliary text encoder Ecyp is not used in inference.

GAN loss L.gan- The first cue for training TraNet comes from the conditional adversarial
loss. We employ a discriminator network Discr, which resembles the multi-scale PatchGAN
discriminator [26, 59], with the only difference being the proposed MFMOD normalization
block added after the last conv layer to improve conditioning.

Perceptual loss £; ;. To ensure the quality of the generated images, we employ a perceptual
loss [29] that minimizes the L1 distance between the feature maps of each input frame x; and
the manipulation result y; extracted by a VGG-19 network [52] trained on ImageNet [10].

L1 = [|[Pyge(x) — Pvaa(y)lh (7

Unsupervised loss Lns,p. Finally, to enforce consistency between latent codes of input

frames (x) and their manipulated versions (y), we introduce an unsupervised loss defined as
the L,-distance between outputs from the B-VAE encoder of RepNet as:

Eunsup = ||q¢ (le) —4¢ (Zly)||2 ®)
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We observe that while the contribution of this unsupervised loss to the final quality is only
marginal, it helps to stabilize the training process.

Training details. We adopt a learning schedule on the image encoder of RepNet while back
propagating the loss from TraNet. This is because at the beginning of training, content code
from RepNet is incomplete, which hurts the training of TraNet. In particular, we gradually
increase the learning rate from zero to a certain value along certain number of iterations. We
provide further details in the supplementary material.

4 Experiments

Datasets. First, we use the 3D Shapes dataset [5] which is proposed for learning and
assessing factors of variation from data. This dataset has 480K images of 64 x 64 resolution.
There are 6 ground truth independent latent factors. They are floor color, wall color, object
color, scale, shape and orientation. For our purpose, we build simple text descriptions which
covers object related latent factors object color, scale and shape, e.g. “There is a big blue
capsule.”. To prevent scale ambiguity, we remove two elements of the scale factor which
is of length 8, originally. In that case, “small”, “medium” and “big” in the descriptions
correspond to the first two, middle two and the last two values, respectively. Moreover, we
consider the orientation factor as a dynamic dimension taking 15 different values. We have
19.2K train and 4.8K test videos with 15 frames and simple text descriptions for each video.

Second, to explore how well our model generalizes to more challenging datasets, we
collected a new video dataset, Fashion Videos, from an online shopping site, containing
short video clips of individuals wearing different kinds of garments. Each clip includes full-
body images of a single person moving around a scene, showing how the clothing looks
from different angles. Moreover, the clip is endowed with a textual product description of
the garment, detailing its visual features (color, material properties, and design details) as
well as its category (dress, jumpsuits, trousers, jumper, skirt, pant). After pre-processing,
we obtained 3178 video clips (109K frames), out of which 2579 are used for training and
598 for testing. More details are provided in the supplementary material and Fashion Videos
will be made publicly available.

Evaluation metrics. We evaluate the results via Inception Score (IS)[51], Fréchet Inception
Distance (FID) [22], and Fréchet Video Distance (FVD) [56]. Moreover, we modify and
use the manipulative precision (MP) metric suggested in [33] to assess the manipulation per-
formance of the models according to the target natural language descriptions. Our version
(MPcr1p) measures the similarity between the manipulated video frames and their corre-
sponding target texts through the cosine similarity in CLIP embedding space [45]. Further
details on the precise definitions of these metrics are found in our supplementary.

Baselines. As, to the best of our knowledge, the literature lacks a strong language-driven
video manipulation model, we compare DiCoMoGAN against SISGAN [14], TAGAN [41]
and ManiGAN [33]'. For video editing, we conduct a frame-by-frame translation.

4.1 Evaluations

Implementation details. For 3D Shapes, we use a 6-dim latent code for the frames in which

'We exclude LightweightGAN [34] from our analysis as it requires part-of-speech (POS) tagging, and our
analysis revealed that existing POS taggers do not give satisfactory results on domain-specific fashion descriptions.
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Figure 4: Qualitative results on 3D Shapes [5] and Fashion Videos datasets. As compared
to SISGAN [14], TAGAN [41] and ManiGAN [33], DiCoMoGAN gives sharper images
faithful to the target descriptions while preserving inherent features not mentioned in the text,
e.g. wall and floor colors, identity, hair style, much better than the competing approaches.

Table 1: Quantitative results. Our approach outperforms the existing frame-based methods
by a large margin in terms of all evaluation measures.
Model IS (1) FID (}) FVD (1) MPcyrp (1) Model IS (1) FID () FVD ({) MPcLip (1)

SISGAN [14] 229 138.78 1185.48 0.18 SISGAN [14]  2.13 80.15 2274.69 0.19
TAGAN [41] 234 8895 974.59 0.19 TAGAN [41] 224 87.60 1294.72 0.24
ManiGAN [33] 2.71 2690 753.89 0.18 ManiGAN [33] 2.76 37.22 392.59 0.22
DiCoMoGAN 2.76 9.08  69.30 0.26 DiCoMoGAN 2.96 15.34 53.75 0.25

3D Shapes
Fashion Videos

the first three encode the text relevant static features, the next two the text-irrelevant static
features, and the last one the dynamic feature. We set B = 32. For Fashion Videos, we do
not have access to the ground truth factors of variation. Thus, we consider a 16-dim latent
code in which the first eight encode the static text relevant features and the next eight the
static text-irrelevant ones. The last four are reserved for the dynamic features. We set § = 1.

Manipulation results. In Tab. 1, we provide our quantitative analysis on the 3D Shapes and
the Fashion datasets. As compared to the state-of-the-art, our method gives the best results
in terms of all of the evaluation metrics. In particular, our method achieves much better FVD
values on both datasets. The qualitative results in Fig. 4 indicate that our model can produce
high quality results as compared to the existing models. SISGAN and TAGAN fail to pre-
serve the text irrelevant parts like the wall color or the identity of the person. ManiGAN tends
to keep the original structure intact and fails to produce the necessary structural changes.
Our method, on the other hand, performs more relevant edits on the input video sequences
according to the target descriptions, altering only the necessary parts of the frames while
keeping what is not mentioned in text unchanged. Please refer to the supplementary material
for additional higher resolution results. Our main goal is to analyze disentangling factors in
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Table 2: Ablation study. Analysis of the components of our DiCoMoGAN model.

Model IS (1) FID (}) FVD (1) MPcyre (1) Model IS (1) FID (1) FVD (}) MPcrre (1)

DiCoMoGAN 276 9.08 69.30 0.26
w/o Latent ODE 291 1250  99.79 0.26
w/o RepNet 2.82 1232 113.89 0.25

DiCoMoGAN 296 1534 5375 0.25
w/o Latent ODE 3.10 5.35 225.58 0.24
w/o RepNet 3.06 1397 49821 0.24

3D Shapes
Fashion Videos

videos for text-based manipulation, and there is definitely room for improvement for visual
quality. In the supplementary material, we also show that better results can be obtained when
we train a local enhancer network on top of TraNet in a similar vein to pix2pixHD [59].
Measuring disentanglement. For disentangle-

5. Shapes, where we hve sround th . ¢ |1 S i
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crrrrrEE
N g o
e
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Figure 5: Latent traversals. DiCo-
MoGAN learns latent variables depict-
ing highly interpretable concepts decom-
posed into text relevant, text irrelevant
static, and dynamic features. Note that
wall and floor colors are not mentioned
in the descriptions during training.

tors of variation, by considering the latent space
discovered by RepNet’s image encoder. Fig. 5
shows sample traversals in the latent dimensions
learned by our method. These traversals clearly
depict interpretable properties of the images ex-
istin the 3D Shapes dataset. While the last latent
dimension steered by the Latent ODE encodes
the orientation of the camera (camera move-
ment), all the others encode static features of
the scene and the object. In fact, while the first
three static dims. are about text relevant features
like object color, shape and size of the object,
the last two encode wall and floor colors — suc-
cessfully identified without even referred in the
provided textual descriptions. We provide fur-
ther quantitative analysis in the supplementary.
Ablation study In Tab. 2, we show the results of our ablation study in which we examine
the contribution of certain components of our method on the performance. Latent ODE
within RepNet plays a key role in achieving high-quality manipulation results, which can be
attributed to its ability of effectively disentangling motion and content. In the supplementary
material, we also analyze the effect of different loss functions and the MFMOD block.

Shape

Scale

Orientation

5 Conclusion and Future Work

We presented DiCoMoGAN to tackle the challenging task of manipulation of videos using
textual descriptions. As a first step towards solving this problem, we developed a new neural
model that incorporates multiple observations to disentangle motion dynamics and visual
content to better perform semantically relevant and temporally coherent edits. Our approach
gives significantly better results than existing frame-based methods. As such, there are also
a number of ways this work could be extended. It is possible to explore more complicated
feature aggregation schemes like self-attention [57]) to learn permutation invariant represen-
tations. Our current model assumes that input video clips include a single object of interest.
An exciting future research direction is to incorporate an object-centric approach [16, 20, 38]
so that it can support manipulation of multiple objects.
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