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Abstract

Video motion magnification methods attract much attention for their strong capabil-
ity of capturing informative subtle signals from diverse engineering scenes. There are
two main types of methods in this field, Eulerian and Lagrangian motion magnification,
which have different advantages and perspectives. However, the combination of both
remains largely unexplored. In this paper, we develop an end-to-end video motion mag-
nification network, MagFormer, with a well-designed two-branch magnification module,
which includes a convolutional neural network (CNN) for the Eulerian motion magni-
fication branch and Transformer for the Lagrangian optical flow magnification branch.
Our MagFormer can inherit the advantages of two perspectives, by leveraging both Eule-
rian global motion features from the camera-centered perspective and trajectories of the
object-centered from the Lagrangian object perspective in a unified parallel framework.
To validate the effectiveness of our method, we collect a new vibration dataset to measure
video motion magnification methods via amplitude and frequency. More experiments are
conducted on fixed-background subtle motion videos, constantly moving object videos
and quantitative vibration videos. Experimental results show that our method achieves a
favorable improvement compared to state-of-the-art methods. Codes will be released at
https://github.com/Ree1s/MagFormer.

https://github.com/Ree1s/MagFormer
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Figure 1: Overview of our MagFormer. It contains an optical flow extraction (GMFlow), a
motion-guided attention module, a feature separator, a two-branch module and a reconstruc-
tion module.

1 Introduction

Video motion magnification aims to detect and visualize subtle motion signals that conceal
valuable information and has drawn much attention in high-precision applications, such as
surgical video analysis [9] and vibration of building [5]. Analogous to hydrodynamics, the
study of video motion magnification is founded on Eulerian and Lagrangian perspectives.
Eulerian approaches measure and amplify the variations over time based on the pixel-wise
change with fixed spatial locations. In contrast, Lagrangian approaches discern small mo-
tions by adopting explicit tracking of pixels and extracting the optical flow.

Eulerian approaches benefit from their spatio-temporal analysis and high efficiency by
fixing the perspective to compute the motion flux [21, 23]. However, they require a delicate
design of signal frequency knowledge and decomposition filters. Lagrangian approaches fo-
cus on the motion trajectory of the pixels of interest in the video and can effectively magnify
the range of motion [6, 7, 13]. But the pixel-wise tracking process of Lagrangian meth-
ods consumes expensive computational resources and fails to consider global information of
the entire images [2]. As Eulerian approaches and Lagrangian approaches are complemen-
tary by nature, hybrid methods with both elements are appealing to inherit the advantages
of both perspectives. In this case, we introduce a MagFormer network with a two-branch
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module of both CNN and Transformer for motion video magnification. The module exploits
CNN for the Eulerian motion magnification branch and Transformer for the Lagrangian op-
tical flow magnification branch, to leverage both global motion features from the Eulerian
camera-centered perspective and trajectories of the object-centered from the Lagrangian ob-
ject perspective.

As shown in the upper part of Fig. 1, our MagFormer takes account of the motion mag-
nification attention, texture features and motion features to make the system effective and
efficient. Specifically, a feature separator is proposed to extract texture features and motion
features from consecutive video frames. Also, the optical flow extractor (GMFlow) and the
motion-guided attention module are introduced to calculate motion magnification attention,
which shows an excellent improvement of the magnification effect of the moving object.
Then, as shown in the bottom part of Fig. 1, we implement a two-branch module to mag-
nify motion features with motion magnification attention in a layer-by-layer manner. It can
highlight local magnified optical flow motion features of moving objects and global Eulerian
motion features of the background. In order to interact motion features of two branches, we
fuse the Eulerian motion branch and the optical flow branch with fusion blocks and achieve
better magnification results. Finally, a reconstruction block is introduced to generate the
magnified output from texture features and magnified motion features. The main contribu-
tions are summarized as follows:

• We implement a two-branch module, including Eulerian motion magnification CNN
branch and Lagrangian motion magnification Transformer branch. It interacts with
global motion feature flow and local precise optical flow of the moving object and
magnifies both in a layer-by-layer manner.

• We introduce an end-to-end video motion magnification framework, called MagFormer,
which includes the optical flow extractor, the motion-guided attention module, the fea-
ture separator and the reconstruction module. Especially, it integrates texture features
and magnified motion features into a unified parallel framework and leads to an effec-
tive and efficient network.

• For video motion magnification, we introduce a new vibration dataset collected by a
modal exciter and a corresponding metric to measure motion magnification via ampli-
tude and frequency.

• Experiments on previous real-world videos and our newly proposed vibration evalua-
tion dataset demonstrate that our model outperforms prior arts for the quality of output
videos and quantitative physical information.

2 Related Work
Early Eulerian approaches [21, 22, 23] simply decompose the input images into different
pyramid levels and magnify the motion by choosing the proper filter. For example, to extract
the subtle motion representation in the input frames, Wu et al. [23] propose the first-order
Taylor expansion, while works like [21, 22] use the complex steerable pyramid. To further
enhance the motion magnification quality, the work [19] proposes a bilateral video magnifi-
cation filter (BVMF) which runs two kernels in the temporal and intensity domains. How-
ever, those works heavily rely on hand-crafted filters and may simply suppress all the quick
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large motion. Recently, beyond hand-crafted filters, learning-based Eulerian [16] proposes
to learn the proper parameters from a synthetic dataset and has less edge artifact. Never-
theless, this method is designed in Eulerian perspective, which will magnify all the motions
and the noise. When the magnification factor is large, the noise will disturb the valid in-
formation seriously. Unlike Eulerian approaches analyzing motion based on fixed positions,
lagrangian’s methods [13] can explicitly amplify the motions of moving objects using optical
flow. However, used naively, the calculation of optical flow in a traditional way will occupy
a huge amount of memory, which is unacceptable when the sizes of input images are large.
Although the work [4] also aims to combine Eulerian with Lagrangian, it is not end-to-end
and limited with poor generalization and a low inference speed.

Learning-based approaches [3, 11, 15, 17, 18] and their network architectures have
achieved remarkable progress due to the revolution of deep learning. The work [16] is the
only learning-based approach work that adopting CNN [11, 18, 24] for motion magnifica-
tion. Considering the motion magnification requires both local information to capture the
object’s motion and global information to retain background motion, we firstly introduce a
two-branch module that integrates both CNN with Transformer [3, 20] to extract local and
global information for Eulerian branch and Lagrangian branch, respectively. Also, we pro-
pose to use a motion-guided mask to select the motion of interest in videos, which can greatly
reduce the annoying video artifacts and wrongly magnified motions suffered by traditional
Eulerian approaches.

3 Method

3.1 MagFormer

We present an overview of our MagFormer in the upper part of Fig. 1. Our proposed net-
work architecture consists of a pre-trained flow-estimation network (i.e., GMFlow) with a
motion-guided attention module, a feature separator, a two-branch module and a reconstruc-
tion network. For video motion magnification, given dense feature maps Fa,Fb ∈ RH×W×D

extracted from two consecutive video frames Ia, Ib, where H,W are the resolution size and D
indicates the size of feature dimension, we aim to predict the magnified image Y and hence
highlight the subtle motion signals. In the following, we describe our network architecture
in detail.
Optical Flow. Based on dense feature maps Fa,Fb, we aim to extract optical flow by exploit-
ing GMFlow [25]. Specifically, we compute the matching distribution C of the correlations
between feature maps with a softmax function,

C = softmax
(

FaFT
b√

D

)
∈ RH×W×H×W . (1)

Based on the matching distribution C and the 2D coordinates of pixel grid g, we can get
optical flows O = Cg−g.

Motion-Guided Attention. To highlight the motion areas and reduce the annoying video
artifacts, we use the optical flow O and the current input frame I as input, and provide
motion magnification attention A in each Transformer and CNN block based on motion-
guided attention module h(·) [12] with a Sigmoid activation function as below:
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(a) Lagrangian Branch (b) Eulerian Branch

Figure 2: Feature analysis. (a) A global attention map and local optical flow in our La-
grangian branch by using quantifying attention method [1]. (b) Global motion flow and a
local activation map in our Eulerian branch by using the CAM method [27].

A = (α −1)Sigmoid(h(I,O))+1, (2)

where α is the given magnification factor and 1 denotes an all-ones matrix of ones to retain
optical flow estimation of the background and amplify the motion of the object.
Feature Separator and Reconstruction Module. For the feature separator, given the in-
put frame I, it aims to get texture representations V and motion representations M through
a three-layer residual block and two independent residual block heads. For the reconstruc-
tion module, it concatenates the re-scaled texture features and the motion features, and then
generates the predicted magnified frames via convolutional layers and residual blocks.

3.2 Two-Branch Module
We propose a sequence of L repeated two-branch module to combine global motion mag-
nification quality from the Eulerian perspective with the precise magnification of moving
objects by Lagrangian methods as shown in Fig. 1 bottom. Furthermore, our two-branch
module with CNN and Transformer can maintain spatial correlations among adjacent frames,
align the moving or jittering background and warp the magnified optical flow accurately. As
shown in Fig. 2, for the Lagrangian branch, we capture global representations by Trans-
former to enlarge the attention range of optical flow magnification, which improves the abil-
ity to distinguish moving objects and the disturbing background. For the Eulerian branch,
taking advantage of CNN’s local reception fields, we first calculate the micro-movements of
each pixel in the whole image and then target and magnify motion signals. In the following,
we introduce two branches and their fusion process, respectively.
Lagrangian Branch. Our Lagrangian branch includes Transformer blocks that contain a
global attention module (GA) [8], a manipulator that implements optical flow magnification
and feedforward functions. Given the motion features of the first frame Ma, we generate
query, key and value by three convolution operations and then obtain three independent
patch embeddings. After the self-attention module and the folding operation to combine
these patches, we apply another convolution layer to achieve the next dimensionally unified
motion feature map MLagra

i+1 , where i denotes the index of L two-branch modules as:

MLagra
i+1 = Res[∆(LN(M̄i),A⊙O)]. (3)

Here, Res is a residual block to adapt the magnification process and maintain the quality of
the magnified frame, ⊙ denotes Hadamard product, LN is the LayerNorm layer, σ is a fusion
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(a) Original video (b) VAM [26] (c) Oh et al. [16] (d) Ours

Figure 3: Cropped frame of the cat toy video when magnification factor is 10. The toy is
moving from left to right while vibrating. The top row shows the detail of two sub-regions of
the image. The bottle row shows a single column of pixels in the yellow line of the cropped
image of the corresponding frames. From left to right, we show (a) original video, and the
results from (b) VAM [26], (c) Oh et al. [16] and (d) our MagFormer.

module. We use bilinear interpolation ∆(·, ·) for the optical flow warping. For the warping
process, We have M̄i = GA(LN(Mi))+LN(Mi).
Eulerian Branch. As shown in Fig. 1, each layer of the Eulerian branch is consist of several
convolution blocks and a manipulator block that implements masked Eulerian magnification.
For ith layer, we have:

MEuler
i+1 = Conv[Mb +Res(Conv(G(Mi)⊙A))], (4)

where Conv is a convolutional layer and G(·) means 3 convolutional layers. Also, Mb means
the next frame and M1 = Mb −Ma.
Fusion. For the ith layer of two-branch module, we get MLagra

i+1 and MEuler
i+1 from Lagrangian

branch and Eulerian branch based on Eqs. 3 and 4. We concatenate the features and then
feed them into a fusion block, which is a stack of convolutional layers with the LeakyReLU
activation, and finally get Mi+1.

3.3 Training

Inspired by Oh et al. [16], to construct the texture and the motion representations for input
frames, we perturb the intensity of input frames by keeping the texture representations of
perturbed frames to be the same, while their motion representation unchanged under per-
turbation. We adopt the robust Charbonnier loss function Lc between ground-truth mag-
nified images Y and our predicted magnified images Ŷ and also introduce losses based on
our paired data constructions. Specifically, we encourage minimizing the distances between
texture representations of consecutive frames Va and Vb, between texture representations of
input frames and perturbed frames Vb and V ′

b and between motion representations of input
frames and perturbed frames Mb and M′

b. We optimize the final objective:

L= Lc(Y,Ŷ )+λ (Lc(Va,Vb)+Lc(Vb,V ′
b)+Lc(Mb,M′

b)), (5)

where λ is a hyperparameter with a value of 0.1 in our paper.
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PSNR/SSIM Phase-based [21] Oh et al. (Static) [16] Oh et al. (Dynamic) [16] Ours

α = 10 22.80/0.7777 21.86/0.7446 26.95/0.8658 26.46/0.8452
α = 20 21.78/0.7235 21.14/0.7106 24.40/0.8217 25.73/0.8369
α = 40 20.82/0.6776 21.01/0.7005 23.25/0.7968 25.38/0.8306

Table 1: Average PSNR and SSIM of all testing videos, using different motion magnification
methods with different magnification factors. The presentation format is PSNR / SSIM. The
best results are in bold.

PSNR/SSIM Phase-based [21] Oh et al. (Static) [16] Oh et al. (Dynamic) [16] Ours

Cat toy 23.75/0.6808 22.68/0.6836 23.39/0.7099 29.20/0.8908
Drone 18.57/0.5481 17.08/0.4984 19.51/0.6000 25.92/0.8156
Bottle 20.46/0.8246 20.26/0.8489 20.27/0.8767 23.68/0.9088
Eye 20.1/0.8262 25.14/0.8766 27.46/0.9023 23.57/0.7832

Plants 19.99/0.5432 19.02/0.5752 24.44/0.8925 24.63/0.7543
Drum 22.06/0.6429 21.86/0.7205 24.47/0.7996 25.30/0.8311

Table 2: Average PSNR and SSIM of different motion magnification methods of six videos
with α = 40. The presentation format is PSNR / SSIM. The best results are in bold.

4 Experiments

4.1 Implementation Details

Datasets. Our method is trained on a synthetic motion magnification dataset proposed
by [16]. All the training images are 384×384 and the magnification factors range from 0
to 100. Considering the different advantages of Eulerian and Lagrangian methods, we select
3 background-fixed videos (eye, plants, and drum) and 3 constantly moving object videos
(cat toy, drone, and bottle) from 9 videos in total (others are gun, guitar and baby) to balance
the testing video set.

To further verify the effectiveness of our proposed method, we use a Nikon D7200 RGB
camera to record the model vibration video of the modal exciter. Besides RGB sequences,
the amplitude and frequency are carefully recorded for evaluation.
Evaluation Metrics. To evaluate the performance of different magnification methods, we
adopt Peak Signal-to-noise Ratio (PSNR) and Structural Similarity Index (SSIM) to evalu-
ate the quality of magnified images. Also, we propose to measure the performance of mo-
tion magnification based on the motion amplitude and frequency as magnifying the motions
should not change the natural frequency.
Experimental Settings. We use ADAM [10] with β1 = 0.9 and β2 = 0.99 for optimization.
The total iteration is set to be 360,000 with a batch size of 4. We use cosine annealing [14] to
update the learning rate, where the initial learning rate is 2×10−4 and the minimum learning
rate is 10−7. All the models are trained on 4 NVIDIA TITAN XP GPUs.

4.2 Results on Real-World Videos

In this section, we compare our method with state-of-the-art motion magnification meth-
ods [16, 21, 26]. We choose the magnification factors as 10, 20, and 40 since the motion
magnification methods are intended to amplify subtle motions at high magnifications.
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Figure 4: Comparison with VAM [26] and Oh et al. [16] on the exciter videos with different
α .

Quantitative Results. We show the average PSNR and SSIM of all testing videos with
different α in Table 1. As presented, our method outperforms the phase-based method [21]
and the learning-based static method [16] significantly. Compared to the learning-based
dynamic method [16], our method achieves comparable performance when the magnification
factor is relatively low (α = 10). With the magnification factor up to 20, our method achieves
the best results, including an impressive 1.33 dB and 0.0152 increase in PSNR and SSIM,
respectively. Moreover, the improvement becomes more obvious when α = 40.

To verify the image quality in the high magnification factor, we calculate the PSNR and
SSIM of different videos with α = 40 as shown in Table 2. For the constantly moving objects
videos (including the cat toy, drone, bottle), our MagFormer achieves the best performance
both in PSNR and SSIM as the motion magnification attention of constantly moving objects
is easy to obtain. For the background-fixed subtle motion videos (including eye, plants,
drum), our MagFormer outperforms in PSNR and SSIM except the eye video.
Qualitative Results. We compare our proposed method with state-of-the-art methods [16,
26], and show the qualitative results. We can see the upper part of the stack single column of
pixels of acceleration [26] and learning-based method [16] is horizontally uneven and their
two sub-regions are also excessive blurring, as the Eulerian method’s inability to choose
motions of interest. In contrast, ours achieves superior performance thanks to the benefits
of the two-branch module and the motion magnification attention that our method can pick
the trajectories of moving objects and magnify the motion of interest. As we can see, the
lower part of the stack column of our MagFormer shows the magnified motion of the cat
toy, while the upper part and the two selected regions (which represent the background with
slight vibration) are highly similar to the original video.

4.3 Results on Vibration Videos
Here, we verify the motion amplitude and frequency of input videos after motion magni-
fication. We fix a building model on a modal exciter and control the model to repeat the
sinusoidal vibration at a constant amplitude and frequency. We record the amplitude and fre-
quency from a laser displacement sensor as the ground truth and evaluate our original videos
and magnified videos.
Qualitative Results. As shown in Fig. 4, our MagFormer can generate more refined details
when retaining physically accurate frequencies and amplitudes. In contrast, with the rising
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(a) (b)

(c) (d)

Figure 5: Amplitude and frequency of motion signal detected using different magnification
methods and magnification factors. Magnified displacement signal of (a) MagFormer with
different α and (b) different methods. Bilateral FFT of magnified displacement signal of (c)
MagFormer with different α and (d) different methods.

magnification factor α , VAM [26] and learning-based Eulerian method [16] fail to handle
sharp horizontal and vertical building patterns. Meanwhile, the ringing effect of VAM dis-
turbs the detection of frequencies and amplitudes. These results also verify the superiority
of our MagFormer on texture generations.

Quantitative Results. We measure the amplitude of the magnified signal of MagFormer
with different magnification factors. As shown in Fig. 5(a), when the maximum amplitude
of the original video is 0.86 pixels, the maximum amplitude of magnification video with 5
times and 20 times magnification is 3.91 pixels and 17.32 pixels respectively. Also, when
the motion frequency is 5 Hz, the detected frequency of the original video, 5 times magni-
fication video, and 20 times magnification video is 4.9950 Hz, 5.0370 Hz, and 5.0370 Hz
respectively, and the relative errors are all less than 0.8% (See Fig. 5(c)). This verifies that
our MagFormer can keep the proposition of motions unchanged during the magnification
procedure. For the frequency consistency and amplitude of the output signal, we compare
MagFormer with the learning-based method [16] with α = 5. As shown in Fig. 5(d), while
the motion frequency of the original video is 4.9950 Hz, the detected frequency of Mag-
former’s result and [16]’s result are 5.0370 Hz and 4.4955 Hz respectively. Our MagFormer
achieves a lower relative error in the frequency (0.8% versus 10%). Also, the spectrum
results are MagFormer are similar to the original signal, while the spectrum of the learning-
based method shows inward contraction. As for Fig. 5(b), we can see that our MagFormer
can keep the magnified signal’s waveform similar to the original, while the waveform of
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Two-branch module Layer-by-layer Attention PSNR
Two-branch w/ w/ 30.28
Two-branch w/ w/o 29.61
Two-branch w/o w/o 28.40
Lagrangian only w/ w/o 25.56
Eulerian only w w/o 24.57

Table 3: Comparison of MagFormer with different branches, with (w/) and without (w/o)
the layer-by-layer manner in Lagrangian branch and motion magnification attention.

the learning-based method’s result changes. In conclusion, our MagFormer can magnify the
motion signal and keep the spectrum of motions unchanged.

4.4 Ablation Study
We conduct an ablation study on selected seven videos to analyze the performance of atten-
tion, and different network structures in Table 3, respectively. For the motion magnification
attention, we compare training with and without motion magnification attention while setting
the network structure as proposed two-branch. We can see that training with attention can
achieve an increase in PSNR of 0.67 dB. To show the superiority of our two-branch mod-
ule, we also compare our two-branch module with only Lagrangian branch (i.e., Lagrangian
only) and only Eulerian branch (i.e., Eulerian only). The usage of the two-branch module
outperforms both Eulerian only and Lagrangian only, with increases in PSNR of 5.04 dB and
4.05 dB. To verify the importance of the layer-by-layer manner, we also design two-branch
where the iteration only occurs in Eulerian branch. Despite a slight decrease compared to the
original two-branch module (-1.21 dB), it still increases PSNR compared to the one-branch
structure (3.83 dB and 2.84 dB). Hence, we find out that our two-branch design is the main
contributor to the improvement in image quality.

5 Conclusion
In this work, we propose a novel unified framework, MagFormer, for video motion mag-
nification. The framework integrates global motion feature flow and local moving object
optical flow and magnifies them through a layer-by-layer pattern. Especially, we introduce a
hybrid two-branch module with a Transformer branch from Eulerian perspective and a CNN
branch from Lagrangian perspective. Compared to prior state-of-the-art methods, we show
that our method has less ringing effect and retains high-quality texture feature up to a higher
magnification factor. Moreover, we introduce a new vibration dataset and a corresponding
metric to evaluate video motion magnification quantitatively via amplitude and frequency.
The experimental results demonstrate the effectiveness of our magnification method in terms
of texture generation quality as well as precisely preserving the original physical properties.
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