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Abstract

Data-hunger and data-imbalance are two major pitfalls in many deep learning ap-
proaches. For example, on highly optimized production lines, defective samples are
hardly acquired while non-defective samples come almost for free. The defects however
often seem to resemble each other, e.g., scratches on different products may only differ
in a few characteristics. In this work, we introduce a framework, Defect Transfer GAN
(DT-GAN), which learns to represent defect types independent of and across various
background products and yet can apply defect-specific styles to generate realistic defec-
tive images. An empirical study on the MVTec AD and two additional datasets showcase
DT-GAN outperforms state-of-the-art image synthesis methods w.r.t. sample fidelity and
diversity in defect generation. We further demonstrate benefits for a critical downstream
task in manufacturing—defect classification. Results show that the augmented data from
DT-GAN provides consistent gains even in the few samples regime and reduces the error
rate up to 51% compared to both traditional and advanced data augmentation methods.

1 Introduction

Automated Visual Inspection (AVI) is vital for quality control in modern production lines.
One of the main challenges in AVI is the acquisition of suitable training data. First, labeling
is usually expensive and time-consuming. Second, only very few defective parts are pro-
duced, which leads to imbalanced datasets. Both unlabelled and imbalanced data are very
challenging for neural network model training.

Generative Adversarial Networks (GANSs) [11] have shown promising performance to
synthesize images where real samples are lacking. However, they tend to overfit on small
datasets [20]. In this paper, we therefore present Defect Transfer GAN (DT-GAN), which
uses defective images across multiple products to collect more information about their shared
characteristics, even for products with few defects. For example, a scratch-like defect on a
wooden surface may share similar shapes with a scratch-like defect on a metal surface, but
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Figure 1: To enrich a dataset with few defective samples, DT-GAN synthesizes images
under full control over background, defect shape, and style.

differ slightly in appearance according to their background materials. DT-GAN is based on
two key features: (1) a weekly-supervised disentangling mechanism for the shared charac-
teristics (foreground defect) and the unshared information (background product) of an input
image. (2) An explicit modeling of the shape and style of foreground defects, where the
styles of each defective type indicate their artistic looks such as light or heavy strokes. Since
defect-specific distributions are learned, new images can be generated with style and shape
sampled randomly or extracted from reference images. As a result, the proposed DT-GAN
achieves semantically meaningful data augmentation by producing novel combinations of
the foreground defects, their associated style and the background products, as illustrated in
Fig. 1. Moreover, by jointly modeling the defect manifold from different products that have
similar defect patterns, our design not only stabilizes the GAN training but also mitigates the
overfitting issue on limited data.

Experiments on three industrial-oriented datasets showcase the power of DT-GAN in
both defect synthesis and its usefulness in a downstream defect classification task where we
report up to 51% reduction in error rates when augmenting the data with DT-GAN.

2 Related Work

Surface defect inspection aims at identifying and classifying defects with the help of machine
vision. Traditional methods [29, 47] build models upon hand-crafted feature extractors,
which are often outperformed by deep learning based models. However, the performance
and generalization ability of deep learning approaches are restricted due to a limited number
of defective samples in real-world scenarios.

Insufficient data has been addressed by multiple methods. Among them, data augmenta-
tion aims to enrich the training dataset by introducing invariances for the model to capture.
Apart from the traditional augmentations [34, 36] such as random flipping and cropping,
some more advanced regularization techniques [7, 44] like Cutmix [42] have been proposed.
However, they do not introduce semantically new information to the training set.

In contrast, GANs augment data with meaningful semantic transformations. The power
of GANs has been demonstrated in many computer vision tasks such as image synthe-
sis [2, 8, 25], image to image translation [16, 17, 26, 28, 31, 49], style translation [4, 10, 18],
image impainting [33, 39, 40, 41] and many other applications. Several recent works [30, 43]
have proposed to use GANSs for data augmentation with realistic defective samples. Defect-
GAN [43] for instance tries to capture the stochastic variation within defects by mimicking
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the defacement and restoration processes. However, it still learns a deterministic mapping
between inputs and outputs while our DT-GAN achieves multi-modality by varying styles.
Moreover, DT-GAN incorporates the shared characteristics of defects from multiple prod-
ucts, which further enrich the diversity of synthetic defects for each product.

3 Methodology

Our approach is cast as an unpaired image-to-image translation problem, where we aim to
achieve domain transfer between multiple domains within a single model. We define the
domain as foreground defect types, where each type of defect is associated with a style
distribution describing the artistic looks. The background product of an input should remain
unaffected during the translation.

3.1 Proposed Framework

Our framework builds on StarGAN v2 [5], which transforms an image by a single vector
representing the target style for the full image. However, to generate semantically mean-
ingful defective images in our setting, it is essential for the model to understand and allow
control over the components in an input image—the foreground defect pattern with its asso-
ciated style and the background product. Given an image x € X, its original defect domain
y € Y and its background product p € P, we modify and extend all four modules from [5] as
follows (see Fig. 2 for the resulting model).

Style-Defect Separation. Our method models the shape and style separately by a domain-
specific defect ¢y € R7*W*C and a style vector sy € R 1512 The former learns to capture
the shapes of the defects and the latter models their artistic looks. This feature allows our
method to produce non-deterministic outputs by varying the style when the same target de-
fect (¢y) is given. Thus, the mapping network M is trained to generate both defect patterns
and their styles in all domains from a latent code z. The final outputs (cg,sy) = Mj(z) are
selected by the given target domain y among N output branches. The procedure for the
style-defect encoder E is similar, except that the domain-specific defect ¢y and style sy are
extracted from a given reference image. The two subnetworks are coupled by a consistency
constraint (discussed in Section 3.2) between the joint image-style spaces, which prevents
model degeneration and retains the multi-modality.

Foreground/Background (FG/BG) Disentanglement. It is crucial to identify and disen-
tangle the FG and BG of an input image for achieving control over the defect (i.e., FG) and
retraining the BG. The FG/BG disentanglement is performed by a depth-wise split at the
bottleneck of G, which divides the feature map into two parts. Driven by the classification
losses as discussed in Section 3.2, the model encodes the BG into the first channels and the
domain-specific defect ¢y into the latter channels. Instead of translating via a style vector,
DT-GAN achieves domain transfer by altering the feature map—where ¢y is replaced with
defect ¢y from the target domain. The given defect style sy is applied through the adaptive
instance normalization (AdalN) [15]. However, to modulate only the fine details of the target
defect ¢y, the background BGg is decoded separately without style modulation. Finally, BGg
and ¢y are concatenated together by depth-wise pooling before output. This design breaks
the conditional relationship between FG and BG and therefore enables our method to freely
combine them as well as learn the full variation of foreground defects.
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Figure 2: Overview of all modules in DT-GAN: the mapping network M, the style-defect en-
coder E, the generator G, and the discriminator D. Details of the modules are in Appendix D.

Multi-Task Discriminator with Auxiliary Classifiers. An FG defect classifier and a BG
classifier are deployed in the multi-task discriminator to strengthen the disentanglement of
FG and BG. Independent of the background, the FG defect classifier identifies the specific
defect from an input image X in the latent space. The BG classifier acts on the image-level
and decides whether the background information of the input image is well preserved. Apart
from that, each branch D5 in the multi-task discriminator D is trained to determine if an
image x is a real image of its foreground defect domain or a fake image x generated by G.
Anchor Domain and Noise Injection. We impose an additional constraint on the generated
and extracted foreground defect of a normal sample by setting the latent representation ¢y
to zero [28]. We refer to this constraint as the ‘anchor domain’ and hypothesize that it
supports the FG/BG disentanglement. Moreover, inspired by [19], a per-pixel noise injection
is introduced to M to improve the diversity of the generated defects.

3.2 Training Objectives

Adversarial Loss. We follow the same adversarial loss as in [5] to encourage an output
image X = G(x, ¢y, 8y) to be indistinguishable from real images in the target domain y

Lagv = Ex,y [logDy(x)] + Ey5,[log (1 — D5(x))] 6))

where Dy and Dy are the output branches of D that correspond to the source domain y and
the target domain Yy, respectively.

Style-Defect Reconstruction Losses. To ensure G takes the domain-specific defect ¢ and
the style sy into consideration during the generation process, we employ a style-defect re-
construction loss (cf. the gray dashed arrows in Fig. 2)

Esd_rec :]Ex,j*,z [||c§_CE(§)||1] +EX,§7Z[|‘Sy_SE(§)||l] ) @)

where Cg(-) and Sg(+) indicate the extracted defect and style of an input, respectively. This
objective urges E to recover ¢y and sy from X. Besides, we apply another constraint to enforce
that the detached domain-specific defect from G is consistent with the one retrieved from E

Edfrec = ]Ex.,y,yN',z [”FGG(X) - cy” 1] + EXJ’-}N’J [HFGG Gf) B Cy” 1] ’ €)
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where ¢y = Ey(x), ¢y = Ej(X); FGg(x) and F G(X) are the replaced defect from input image
x and generated image X, respectively.

Diversity Loss. For a pair of random latent codes z; and z,, we compute 5,8y, = M_;,(z,-) for
i € {1,2} and enforce a different outcome of G for differently mixed defect and style input

pairs according to

Los = Exja, 2 [|G(x, ¢5,,85,) — G(X7c?2’s?1)”1}
+Ex5’,z1,zz [”G(Xacilasyl) - G(chizasiz)” 1] 4
+ Zm7n,0 [EX-}N’azl V22 U|G(X’ cym’syn) - G(X’ C§075§0) || 1]] ’

where m,n € {1,2|m # n} and o € {1,2}. Driven by this term, G is forced to discover
meaningful defects and style features that lead to diversity in generated images. We ignore
the denominator ||z; —z5||, of the original diversity loss [27] for stable training as in [5].
Cycle Consistency Loss. To encourage the disentanglement of the background, the domain-
specific defect and the style, we impose a cycle consistency loss [48] to reconstruct the input
image x with given defect ¢y and style sy

Ec}’c = IEX,)‘.}N’,z [| ‘X - G(iv cyvsy)Hl] b ®)

where ¢y,sy = E(x) is the defect and style of the input image X, respectively.
Classification Losses. We employ two classification losses, which are essential to enforce
the FG/BG disentanglement: First, the FG defect classification loss

Lrc = Ex,yy | — 102 Drc (y[Xreal) | + B,y 5[ — 102 Dr6 ([Xfake)| (6)

which aims to ensure the domain-specific defect is properly encoded and carries enough
information from the target domain. Second, the BG classification loss

LG = Ex,i.p [ —logDpg (P|Xreal)] + Exppe.p [ —logDgg (p|xfake)] ) (7N

where p is the corresponding background type of X;ea; and Xgaxe. With the help of this objec-
tive, G learns to preserve the unshared characteristics of its input image x while dissociating
the foreground defect.

We summarize the full objective and provide the training details in Appendix B.

4 Experiments

Dataset. We conducted the image synthesis experiments on three industrial-oriented datasets:
the MVTec AD, the Magnetic Tile Defects (MTD), and a new dataset of industrial images—
the Surface Defect Inspection (SDI). For all the experiments, we re-organized the defects in
the datasets into three mutually exclusive classes: Normal, Scratches-like and Spots-
like according to their visual appearance.

All three datasets are relatively small—the number of defective images for each defect
category varies from 8 to 620, which is rather limited considering the sophisticated patterns
of defects. This poses a major challenge for training generative models. Details of the
datasets are summarized in Appendix A.l.

The SDI dataset will be published with the final version of the paper.
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Figure 3: Ablation study. (a) The baseline StarGAN v2[5]. (b) + Style-defect branches. (c)

+ FG and BG classifier. (d) + Separately decoding FG and BG in G. (e) + Anchor domain
(e.g. Normal) and Noise injection in M. (Best viewed in color.)

To study the performance of DT-GAN generated samples in defect classification, all the
experiments were performed on the SDI dataset due to the limited availability of defective
samples in the other two datasets. Note that only the training set of the SDI datset was
used in GAN training, the validation and test set were left untouched for final evaluation in
classifier training. For a fair comparison, all images were resized to 128 x 128 resolution for
both GAN training and classifier training, which was also the highest resolution used in the
baselines for image generation.

4.1 Defect Generation

Baselines. As discussed in Section 3, DT-GAN can either use M to randomly generate
defects and styles, or use E to extract both from one or two reference images. We refer to
these cases as ‘latent-guided’ and ‘reference-guided’, respectively. Since the two ways of
guidance are fundamentally different, we evaluated them against two sets of baselines: our
reference-guided image generation was compared to Mokady et al. [28] and StarGAN v2 [5].
Note that without the key designs we introduced in Section 3.1, DT-GAN degrades to [5].
Images generated through the latent-guided part of DT-GAN were compared to the state-
of-the-art GANSs in image synthesis: BigGAN [2] and StyleGAN2 [21]. We set both [2]
and [21]> to condition on defect types during training. All baselines were trained from
scratch with the public implementations provided by the authors®.

Metrics. We employed the commonly used frechet inception distance (FID) [14] to evaluate
both the visual quality and the diversity of the generated images. A lower FID score indicates
better performance.

Ablation Study. We visually demonstrate the effect of each feature we added to DT-GAN
compared to [5] in Fig. 3, using the examples of reference-guided image synthesis from
Normal to Scratches. Also, we report the average FID over all three datasets for each
configuration in Appendix E.1.

Fig. 3(a) corresponds to [5] and highlights the drawback of an entangled style vector—
the model extracts a style from the entire reference image instead of a style of the fore-
ground defect and thus, changes the background product in its output, which we refer to as
an ‘identity-shift’. We first tackle this problem by modeling the foreground defect and style
explicitly and introducing the FG/BG disentanglement, so the defect replacement and style
modulation can be performed at different stages in G. This leads to better preservation of the
background structure in (b), but the resulting image contains no clear defect from the refer-
ence image. Thus, we add a FG and a BG classifier to D in (c) to ensure the output image
contains the desired foreground defect. Note that the additional product type labels can be

2We used the implementation in [20] for conditional training.
3We could not obtain the code of Defect-GAN [43] to reproduce their results.
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Table 1: Quantitative comparison of DT-GAN with baseline image synthesis methods using
FID(]). Note that * indicates that the model is trained with augmentation methods.

$ 5}'
g & N Q
< N & &

2 > All

Mokady et al. [28] 68.69 669  36.21 41.87 6026 275.12 8171 68.30 87.38
StarGAN v2 [5]  96.85 58.28 50.95 35431 336.63 434.77 41137 8449 228.46
StyleGAN2 [21] 90.1 5295 138.09 5137 51.6 22596 140.01 51.39 100.18
BigGAN* [2] 218.74 13441 270.89 3447 101.7 391.54 11332 6791 166.62
Ours 65.62 53.62 3794 2733 78.01 35215 7711 7841 96.27

Method A B c ¢ I &

acquired automatically from production lines. These two auxiliary classifiers improve the
image quality by a big margin, however, the generated defects fail to preserve the structure
shown in the given reference. To address this issue, we add separate decoders for FG and
BG in G. As seen in Fig. 3 (d), this enhances the preservation of background characteristics
like lighting even more and the foreground defect characteristics start to match the patterns
from the reference. Finally, we impose the anchor domain constraint and the per-pixel noise
injection to M. This leads to more diverse defects which are not clear in Fig. 3 (e) but clearly
affect the FID scores.

Quantitative and Qualitative Evaluation. The quantitative comparison of DT-GAN with
baseline image synthesis methods on all datasets is shown in Table I, and the qualitative
comparison is in Fig. 4. For a fair comparison, we trained [2], [21] and [28] on each product
separately to have control on background products. We also experimented with augmentation
methods for GAN training [20, 46] and only report the best setting (see Appendix E.4). Note
however, the images from [5] and DT-GAN were always obtained from a single model.

As observed in Table 1, our method outperforms the rest in 3 out of 8 cases and provides
the second best overall performance. Our method is often outperformed by [21] and [28],
however, we note that FID is not sensitive to detect overfitting, which often happens when
training on a small dataset. We thus present the nearest neighbor results in Appendix E.5
to demonstrate that the low FID scores of [21] and [28] come from memorizing the train-
ing dataset. Also, there are further evaluations in the downstream task which support our
assumption (see Appendix C.2).

The latent-guided image synthesis results are presented in Fig. 4 (a). We observe that
generated samples from [2] often present abnormal grid patterns and samples from [21] ei-
ther overfit or contain no clear defect. Both methods do not take images as inputs but infer
both FG and BG of a synthetic image from a given latent code. This conditioning leads to
limited diversity and artifacts in the output images while making the models less robust to
overfitting. In contrast, [5] performs translation based on input images but suffers from the
same entanglement issue. As discussed in the ablation study, due to the lack of our designed
features, [5] fails to preserve the product type in its output images (i.e., identity-shift) and re-
sults in undesired outputs, which is also reflected in the FID scores. Our architecture, which
disentangles FG and BG, mitigates these issues and provides visually convincing results.

Also for reference-guided image synthesis, where we used defects from different fore-
ground reference images as illustrated in Fig. 4 (b), only our method produces high-quality
images with preserved background from the source and transferred foreground defect from
the reference. This again showcases the effectiveness of the FG/BG disentanglement. See
Appendix E.2 for more images, where DT-GAN is the only method that can perform trans-
lations between all domains, including defect-to-defect translations.
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Mokady et al. StarGAN v2 Ours

(a) Latent-guided (b) Reference-guided
Figure 4: Qualitative comparison of latent-guided and reference-guided image synthesis re-

sults on case Normal-to-Scratches. In each subfigure, the Source column indicates
the expected background in the output images. (a) The defective images of the first two
columns are fully generated from random noise, while random defects are synthesized onto
given source images in the last two columns. * indicates that the model was trained with
DiffAug [46]. (b) Each method transforms the given source images into the target defect
domain with the defects and styles extracted from the reference images. (Best viewed in
color and zoom in.)

Randomly Sampled Styles

Randomly Sampled Styles

Reference  StarGAN
v2

Reference  StarGAN|
v2

Source Source

Ours Ours

(a) Normal-to-Scratches (b) Normal-to-Spots
Figure 5: The visual effect of randomly sampled styles on StarGAN v2 and DT-GAN when

given a fixed pair of source background and reference defect images.

Styling. We visually demonstrate the effect of the style vector in Fig. 5. When combing
randomly sampled styles with a fixed pair of input images, [5] suffers from the identity-shift
and fails to produce meaningful defects while DT-GAN provides a variety of artistic styles
in its outputs due to the style-defect separation as discussed in Section 3.1.

4.2 DT-GAN for Data Augmentation

To demonstrate the effectiveness of our synthetic images, we also evaluated DT-GAN as a
data augmentation method for defect classification as an exemplary downstream task. There-
fore, we used all defective samples from the SDI dataset and an additional 4,000 normal
(non-defective) images for each product to generate further defective samples for classifier
training (see Appendix C for more details).

As backbone we employed the widely used ResNet-50 [12] with ImageNet pretrained
weights. For experiments with synthetic data, we attached an auxiliary classifier to the net-
work through a Gradient Reversal Layer (GRL) [9], ensuring the extracted features by the
backbone are invariant for both the real and the synthetic samples. Since the SDI dataset is
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Table 2: Quantitative comparison of the baseline methods on the defect classification task.
The reported values are the achieved error rates (%) and standard deviation over five runs.

Aug. Syn. ResNet-50

Method Data A B C
None None 1491+1.52 8.2+1.49 15.24+1.51
Trad None 13.81+2.36 6.8+1.64 16.57£3.20
Trad Mokady et al. [28] 20.72+1.49 5.842.77 24.76£10.1
Trad StarGAN v2 [5] 10.60+1.99 7.4+3.44 15.81+1.44
Trad StyleGAN2 [21] 29.45+9.13 6.8+£2.05 13.1443.12
Trad BigGAN* [2] 12.17£1.99 5.8+1.93 15.62+3.06
Trad Ours 6.72+1.65 4.6+0.89 12.76+1.97
CutMix [42] None 13.63+£2.87 7.4+1.52 14.09+2.27
CutOut [7] None 12.36+0.50 6.2+0.84 12.95+2.19
MixUp [44] None 14.36x1.75 6.2+1.79 16.38+2.80
CutMix [42] Ours 14.54+3.02 5.2+0.45 19.42+3.47
CutOut [7] Ours 12.18+1.99 4.0+1.22 11.42+1.50
MixUp [44] Ours 15.27£2.98 8.2+3.49 21.52+3.96

Table 3: Quantitative comparison of the image synthesis methods using LPIPS to measure
the similarity between the synthetic samples. The lower score indicates more similarity.

&
&

%
o & 8
Method A B c O J

& &8

Mokady et al. [28] 0.34 0.46 0.22 0.14 0.28 0.22 0.22 0.38
StarGAN v2 [5] 0.32 0.33 0.20 0.37 0.38 0.40 0.38 0.38
StyleGAN2 [21] 0.29 0.36 0.19 0.09 0.26 0.27 0.18 0.36
BigGAN* [2] 0.30 0.29 0.19 0.08 0.22 0.21 0.18 0.37
Ours 0.28 0.28 0.17 0.07 0.18 0.19 0.17 0.30

highly imbalanced, we oversampled the minority classes [23] unless the data was balanced
through synthetic images. Traditional data augmentations like random horizontal flips, jitter-
ing, and lighting [36] were always applied unless otherwise specified. All following results
were evaluated by the achieved error rates over five runs with different random seeds.
Effectiveness of Synthetic Data. We first compare the classifier performance for no aug-
mentation, traditional data augmentation (Trad-Aug), advanced regularization techniques
like [42], [7] and [44] and a combination of traditional augmentation with synthetic images
for GAN methods including DT-GAN in Table 2. For brevity, the detailed results are in
Appendix E.3. We found consistent improvements when combining our method with [7]. In
contrast, [42] and [44] seemed to jeopardize the performance. We hypothesize that it is due
to the real-fake domain gap—both methods regularize the training by randomly concatenat-
ing two training images in different manners, however, it destructs the backpropagation from
the GRL, which results in poor performance.

Methods like [28] and [21] outperformed our method in some cases concerning FID.
However, our method led to better performance in downstream classifier training. We hy-
pothesize this is because the baselines overfit the training set. Quantitatively this is sup-
ported by the LPIPS [45] scores in Table 3, which computes the similarity of the synthetic
samples to each other. Qualitatively this could be seen in the nearest neighbor analysis in
Appendix E.5. None of the commonly used metrics is designed to indicate small perturba-
tions like the variance of defects. However, by combining FID, LPIPS, the nearest neighbor
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Table 4: Classifier performance using synthetic images generated by DT-GAN trained on
reduced (20A) and full-scale (All) of the SDI dataset.

Dataset 20A All

Size Trad-Aug Ours Trad-Aug Ours

A 34.18+4.39 28.55+7.32 13.81+2.36 6.72+1.65
B 5.8+0.45 5.6+1.14 6.8+1.64 4.6+0.89
C 16.95+1.17 10.86+1.28 16.57+3.20 12.76+1.97

Table 5: Cross-product defect transfer on classifiers trained with reference-guided synthetic
images of DT-GAN using different products as defect reference. For ‘v-Others’, we only
report the best results from all experiments with other products as reference.

Trad-Aug v-Same v-Others v-ABC
A 13.81£2.36 11.81£2.65 11.99+1.63 11.09+3.49
B 6.8+1.64 6.6+1.52 6.4+1.34 5.6x1.34
C 16.57+3.20 14.85+1.73 11.23+0.80 11.42+0.96

analysis, and the classifier performance, we believe that our method improves performance
on all products due to the combination of high visual quality and diversity in our samples.
Impact of Dataset Size. Motivated by the limited availability of data in real-world produc-
tion scenarios, we evaluated DT-GAN for data augmentation on the full SDI dataset (All)
as well as a subset, which only contains 20 defective samples of product A for each defect
type (20A). In this case, DT-GAN was also trained on the reduced subset. As shown in Ta-
ble 4, there is a clear improvement when synthetic images from DT-GAN are used as data
augmentation, even for the extremely limited data subset.

Cross-Product Defect Transfer. We hypothesized that limited data can be counteracted by
transferring defects across multiple background products if there are at least some defects
that occur on multiple products. We tested this approach by comparing the performance of
classifiers trained on synthetic images with defects from the same product (v-Same), from
another product (v-Others) and from all products (v-ABC). As we can see in Table 5, the
best performances are achieved by the models that transfer defects across products (v-Others
or v-ABC). We interpret this as support for our hypothesis and its practical usefulness. The
full scale results are in Appendix E.3.

5 Conclusion

We propose a novel method, DT-GAN, which allows diverse defect synthesis and semantic
data augmentation by exploiting shared defect characteristics across multiple products. Due
to explicit style-defect separation and FG/BG disentanglement, DT-GAN achieves higher
image fidelity, better variance in defects, and full control over FG and BG while being
sample-efficient and robust against model overfitting. We demonstrated the feasibility and
benefits of DT-GAN on a real industrial defect classification task and the results show that
our method provides consistent gains even with limited data and boosts the performance of
classifiers up to 51% compared to traditional augmentation and state-of-the-art image syn-
thesis methods. For future investigation, we aim to represent defects and their styles more
explicitly (e.g., localization), improve the explainability of the model and also enhance the
model transferability to unseen products.



WANG, HOPPE, MONARI, HUBER: DEFECT TRANSFER GAN 11

References

[1]

[7]

(8]

[9]

[10]

(1]

[12]

[13]

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. MVTec AD —a
comprehensive real-world dataset for unsupervised anomaly detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9584-9592, 2019. doi: 10.1109/CVPR.2019.00982.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for
high fidelity natural image synthesis. In Proceedings of the International Conference
on Learning Representations (ICLR), 2019.

Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Domain
adaptive faster r-cnn for object detection in the wild. pages 3339-3348, 2018.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul
Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-
image translation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse
image synthesis for multiple domains. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 248-255. Ieee, 2009.

Terrance Devries and Graham W. Taylor. Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. In

Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropa-
gation. In Proceedings of the International Conference on Machine Learning (ICML),
pages 1180-1189, 2015.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer us-
ing convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2414-2423, 2016. doi:
10.1109/CVPR.2016.265.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2014.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770-778, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 630-645. Springer, 2016.



12

WANG, HOPPE, MONARI, HUBER: DEFECT TRANSFER GAN

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
S. Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive
instance normalization. In Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), Oct 2017.

Xun Huang, Ming-Yu Liu, Serge J. Belongie, and J. Kautz. Multimodal unsupervised
image-to-image translation. Proceedings of the European Conference on Computer
Vision (ECCV), abs/1804.04732, 2018.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image trans-
lation with conditional adversarial networks. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5967-5976, 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 694-711. Springer, 2016.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo
Aila. Training generative adversarial networks with limited data. Advances in Neural
Information Processing Systems (NeurIPS), 33:12104-12114, 2020.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Analyzing and improving the image quality of stylegan. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, Toronto, Ontario, 2009.

Charles X. Ling and Chenghui Li. Data mining for direct marketing: Problems and
solutions. In Proceedings of the Fourth International Conference on Knowledge Dis-
covery and Data Mining, pages 73-79. AAAI Press, 1998.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer Vision (ICCV),
December 2015.

Mario Luci¢, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, and
Sylvain Gelly. High-fidelity image generation with fewer labels. In Proceedings of the
International Conference on Machine Learning (ICML), pages 4183-4192.

Ligian Ma, Xu Jia, Stamatios Georgoulis, Tinne Tuytelaars, and Luc Van Gool. Ex-
emplar guided unsupervised image-to-image translation with semantic consistency.
In Proceedings of the International Conference on Learning Representations (ICLR),
2019.



WANG, HOPPE, MONARI, HUBER: DEFECT TRANSFER GAN 13

[27] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan Yang. Mode
seeking generative adversarial networks for diverse image synthesis. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
1429-1437, 2019.

[28] Ron Mokady, Sagie Benaim, Lior Wolf, and Amit Bermano. Masked based unsuper-
vised content transfer. In Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

[29] Henry Y. T. Ngan, Grantham K. H. Pang, and Nelson H. C. Yung. Review article: Au-
tomated fabric defect detection-a review. Image and Vision Computing, 29(7):442-458,
June 2011. ISSN 0262-8856. doi: 10.1016/j.imavis.2011.02.002.

[30] Shuanlong Niu, Bin Li, Xinggang Wang, and Hui Lin. Defect image sample generation
with gan for improving defect recognition. IEEE Transactions on Automation Science
and Engineering, 17(3):1611-1622, 2020. doi: 10.1109/TASE.2020.2967415.

[31] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image
synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2019.

[32] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zach
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[33] Deepak Pathak, Philipp Krihenbiihl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros.
Context encoders: Feature learning by inpainting. Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 2536-2544, 2016.

[34] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classifi-
cation using deep learning. ArXiv, abs/1712.04621, 2017.

[35] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[36] Connor Shorten and T. Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6:1-48, 2019.

[37] Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
2818-2826, 2016. doi: 10.1109/CVPR.2016.308.

[38] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional
neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceed-
ings of the International Conference on Machine Learning (ICML), volume 97 of Pro-
ceedings of Machine Learning Research, pages 6105-6114. PMLR, 09-15 Jun 2019.

[39] Raymond A. Yeh, Chen Chen, Teck-Yian Lim, Alexander G. Schwing, Mark A.
Hasegawa-Johnson, and Minh N. Do. Semantic image inpainting with deep generative
models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6882—-6890, 2017.



14

WANG, HOPPE, MONARI, HUBER: DEFECT TRANSFER GAN

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Gen-
erative image inpainting with contextual attention. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5505-5514,
2018. doi: 10.1109/CVPR.2018.00577.

Jiahui Yu, Zhe L. Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. Free-
form image inpainting with gated convolution. Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 4470-4479, 2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Young Joon Yoo. Cutmix: Regularization strategy to train strong classifiers with lo-
calizable features. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 6022-6031, 2019.

Gongjie Zhang, Kaiwen Cui, Tzu-Yi Hung, and Shijian Lu. Defect-gan: High-fidelity
defect synthesis for automated defect inspection. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pages 2524-2534,
January 2021.

Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and David Lopez-Paz. Mixup: Be-
yond empirical risk minimization. In Proceedings of the International Conference on
Learning Representations (ICLR), volume abs/1710.09412, 2018.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable aug-
mentation for data-efficient gan training. Advances in Neural Information Processing
Systems (NeurIPS), 33:7559-7570, 2020.

Wenju Zhou, Minrui Fei, Huiyu Zhou, and Kang Li. A sparse representation based fast
detection method for surface defect detection of bottle caps. Neurocomputing, 123:
406414, January 2014. ISSN 0925-2312. doi: 10.1016/j.neucom.2013.07.038.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros,
O. Wang, and E. Shechtman. Toward multimodal image-to-image translation. In Ad-
vances in Neural Information Processing Systems (NeurlPS), 2017.



