
A Dataset

A.1 The Surface Defect Inspection Dataset

The Surface Defect Inspection (SDI) dataset consists of 20,414 images at various resolutions.
It contains three kinds of products—product A, product B and product C. Each can be fur-
ther classified into three foreground defect domains—Normal, Scratches and Spots.
Fig. 6 shows example images of the SDI dataset. It is worth mentioning that the dataset is
highly imbalanced not only between normal and defective samples but also between different
products as shown in Table 6. This sets a more challenging task when training deep neural
networks like GANs and downstream classifiers.

For each foreground defect and background product, we randomly select 50 images, 30%
of which are used for validation and 70% as the test set. All remaining images are used as
training sets for GAN and classifier training. We present the distribution of the training set
when training DT-GAN in Table 7. Note that the normal samples used in GAN training are
only a subset of all available samples in Normal and we keep the rest of them for generating
defective samples at test time. For classifier training, we show the statistics in Table 8, where
the number of normal samples involved in classifier training increases incrementally. The
validation set is used to select the best model during classifier training while the test set is
left untouched until the final evaluation. Both the validation and test set are inaccessible by
DT-GAN.

A.2 The MVTec Anomaly Detection Dataset

The MVTec Anomaly Detection (MVTec AD) dataset [1] contains 15 different object and
texture categories for anomaly detection. The dataset is formed of non-defective images
for training and both non-defective and defective images with various kinds of defects for
testing. The pixel-level annotations of all defective images are also provided. It is worth
noting that the MVTec AD dataset is relatively small in terms of the number of images,
where the number of training images is ranging from 60 to 391. Moreover, the number of
defective images for each defect category in the test set is varying only from 8 to 30, which
is relatively limited considering the sophisticated pattern of defects.

We conducted image synthesis experiments on a subset of the MVTec AD dataset, where
we selected four texture categories: CARPET, LEATHER, WOOD and TILE for our targeted
scenario, i.e. surface defects. Furthermore, we aggregated some of the original defect types
defined in the MVTec AD dataset into Scratches-like and Spots-like defects according
to their visual appearance. Details of the resulting dataset are shown in Table 9.

Table 6: Distribution of the full SDI dataset.
Overview

A B C

Normal 6,250 6,250 6,250
Scratches 340 167 121
Spots 108 670 258

Table 7: The training set for DT-GAN and the
baseline image synthesis methods.

Overview

A B C

Normal 700 700 700
Scratches 290 117 71
Spots 58 620 208
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(a) Normal

(b) Scratches

(c) Spots

Figure 6: Overview of the SDI dataset. (Best viewed in color.)

Table 8: The training, validation, and test set for classifier training, where N increases
incrementally—1,500, 2,200, 4,000, and 6,200.

Train Validation Test

A B C A B C A B C

Normal N N N 12 18 15 38 32 35
Scratches 290 117 71 14 16 15 36 34 35
Spots 58 620 208 14 16 15 36 34 35
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Table 9: Overview of our formation of the MVTec AD sub-dataset. The first column rep-
resents the original defect types in the MVTec AD dataset while the first row stands for the
defect types in our targeted scenario. We list the ID of samples we took from the MVTec
AD dataset and show the number of samples in row Sum.

(a) CARPET

Scratches Spots

Color 011, 012, 014, 016, 017 000, 003, 004, 007, 015, 018
Thread 000-018 -
Hole - 000-016

Sum 24 23

(b) LEATHER

Scratches Spots

Color 001, 003, 005, 007, 009, 011, 013, 015, 018 000, 002, 006, 008, 010, 012, 014
Cut 000-018 -
Fold 000-006, 009-016 -
Glue 003, 009, 010, 016, 017 000-002, 005-009, 011-015, 018
Poke - 000-017

Sum 48 39

(c) TILE

Scratches Spots

Crack 000-016 -

Sum 17 0

(d) WOOD

Scratches Spots

Color 003, 005 -
Scratch 001-006, 008-010, 013-016, 018-020 000-016
Hole - 000-004, 006-009
Combined 008 001, 002, 009

Sum 19 12
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A.3 The Magnetic Tile Defects Dataset
The Magnetic Tile Defects (MTD) dataset contains 925 defect-free and 392 anomalous mag-
netic tile images from five different defect classes—CRACK, BLOWHOLE, BREAK, FRAY
and UNEVEN. All of the images are gray-scale with varied illumination levels and image
sizes. Among them, we selected CRACK as the Scratches-like defect and BLOWHOLE as
the Spots-like defect for our demonstration.

B Training Details

B.1 DT-GAN
Full Objective. Our full objective functions can be summarized as

min
G,M,E

max
D

λadv ·Ladv +λsd_rec ·Lsd_rec +λd_rec ·Ld_rec

−λds ·Lds +λcyc ·Lcyc +λFG ·LFG +λBG ·LBG ,
(8)

where λadv, λsd_rec, λd_rec, λds, λcyc, λFG, and λBG are the positive hyperparameters for each
term.

We follow the training scheme as described in StarGAN v2 [5] with the following modi-
fications. To fit the model on a single Nvidia GTX TITAN X, the batch size is reduced to four
while the model is still trained for 100,000 iterations. The training time is about three and a
half days on the dedicated GPU with the modified network architecture4 and loss functions
mentioned in Section 3 in PyTorch [32]. We set λadv = λsd_rec = λd_rec = λds = λcyc = λFG =
λBG = 1 for all three datasets.

B.2 Classifiers
We train all the classifiers that use ResNet-50 as the backbone for 100 epochs with the
SGD optimizer [35] and batch size 64. The initial learning rate is 0.001, momentum is 0.9
and weight decay is 1e-4. A learning rate scheduler is set to reduce the learning rate by
a factor of 0.1 when the validation loss stops decreasing for 5 epochs. The same setting
also applies to EfficientNet-b4, except the batch size is set to 128. Although DT-GAN can
synthesize realistic defective samples, we notice that there still exists a domain gap between
the generated samples and the real samples. To explore the full potential of the generated
samples, we attach an auxiliary source classifier to distinguish between synthetic and real
samples. Then, this classifier is connected to the backbone (e.g., ResNet-50) through a
Gradient Reversal Layer. With the help of the Gradient Reversal Layer, the backbone is
forced to extract the shared features between synthetic and real samples, which ensures all
training samples are effectively learned.

We design a two-layer perceptron that connects to the average pooling layer in ResNet-
50 as shown in Fig. 7. Note that the usual fully connected layer after the average pooling
in ResNet-50 remains the same and is not affected by the extra branch we added. Inspired
by [3], a three-layer perceptron is used for EfficientNet-b4 instead as shown in Fig. 8. Its
layers are initialized with a random normal distribution, where the standard deviation is set
to 0.01 for the first two layers and 0.05 for the output layer. The biases for all layers are set
to 0.

4We based our implementation on the source code from StarGAN v2: https://github.com/clovaai/stargan-v2
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Figure 7: ResNet-50 with GRL. Figure 8: EfficientNet-b4 with GRL.

C Evaluation setup

C.1 Generated Samples from DT-GAN.
DT-GAN requires images as input for generating synthetic data. At test time, we translated
each Normal image in all datasets into four defective images: two with Scratches and
two with Spots. The translations were performed by two subnetworks: by the mapping
network M using random noise (‘latent-guided’) and by the style-defect encoder E using a
reference image (‘reference-guided’). We first randomly sampled one latent code for each
foreground defect domain. Similarly, we also randomly sampled one reference image from
the training set for each foreground defect domain. The corresponding defects and styles
were then produced by the two subnetworks respectively and fed to the generator G for
target image generation.

C.2 Setup for Classifier Training
We generated synthetic images following the procedure in Appendix C.1 and conducted
classification experiments separately on images generated from each subnetwork and a set of
mixed samples from both subnetworks. We refer to the latter case as the mixture set, where
we randomly sampled 50% of the generated images from each subnetwork. We collected
additional 6,200 normal images for each product to generate defective samples and evaluated
the performance of classifiers when the varying amount of normal samples is available —
1,500, 2,200, 4,000, and 6,200. This results in increasing dataset sizes from 4,500 to 18,600.
Table 10 shows consistent gains of using synthetic images generated from DT-GAN. We
observe that the mixture set further boosts the performance of the classifiers in most cases.
Presumably, the mixture set benefits from the combination of samples from reference-guided
synthesis, which are well aligned with the original defect distribution, and the samples from
latent-guided synthesis (i.e. from random noise), which adds novel but plausible defects to
the dataset. In the main paper, we report the results of the mixture set at a data scale of
12,000 for all experiments, including the quantitative evaluation of DT-GAN.

C.3 Frechét Inception Distance (FID)
We used the feature vectors from the last average pooling layer of the ImageNet pretrained
Inception-V3 [37] to calculate the score. For each test image from the Normal domain, we
translated it into a synthetic defective image of each defect domain. The defects and styles
for the translations were acquired in two ways: by randomly sampling from the standard
normal distribution and by randomly sampling a reference image from the train set of a de-
fect domain. To calculate the FID score, we generated 4,000 defective samples per product
per defect domain for each way of guidance and formed the mixture set by randomly sam-
pling 2,000 images per product per defect domain from each way. The reported FID scores
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Table 10: Classification results with regard to the synthetic images generated from the two
subnetworks and the mixture set.

Dataset
Size

A

Trad-Aug Latent Reference Mix

4500 16.00±1.04 13.81±1.63 15.27±3.49 10.18±1.75
6600 14.90±1.38 12.36±0.81 16.00±2.85 10.54±1.22
12000 13.81±2.36 10.90±3.34 11.09±3.49 6.72±1.65
18600 13.62±2.22 10.18±1.18 13.81±8.56 10.54±2.45

Dataset
Size

B

Trad-Aug Latent Reference Mix

4500 8.8±0.45 6.2±2.17 6.8±1.30 5.6±1.51
6600 7.6±1.51 8.0±0.70 6.0±1.41 6.8±3.11
12000 6.8±1.64 5.8±1.30 5.6±1.34 4.6±0.89
18600 6.8±1.79 7.0±1.00 6.0±1.58 5.0±1.87

Dataset
Size

C

Trad-Aug Latent Reference Mix

4500 17.14±4.62 14.66±2.74 12.00±1.59 14.09±2.27
6600 15.23±2.33 13.14±1.95 12.57±1.57 11.42±0.00
12000 16.57±3.20 12.95±4.34 11.42±0.96 12.76±1.97
18600 15.62±0.85 12.57±2.46 12.95±2.98 11.64±1.24

were then computed between the defective images in the training set and the mixture set of
synthetic defective images.

D Network Architecture

In this section, we provide the architectural details of all four modules in DT-GAN.
Generator (Table 11). The encoder part of the generator consists of three downsampling
blocks and two intermediate blocks (Table 11 (a)), all of which are pre-activation residual
units [13]. Then the encoded feature map is split depth-wise into background (Table 11 (b))
and foreground (Table 11 (c)). Both of them are then carried through separate decoders. We
use instance normalization (IN) and adaptive instance normalization (AdaIN) as indicated
in the activation column. The style is injected into all AdaIN layers to modulate the affine
transformations. Note that AdaIN is only used in the foreground decoder. The outputs of
both decoders are only merged in the end (Table 11 (d)).
Mapping Network (Table 12). The mapping network consists of four shared linear layers
(Table 12 (a)) and two separate branches: one for generating styles (Table 12(b)) and one
for defects (Table 12(c)). Each of them is further divided into K output branches, where K
denotes the number of foreground defect domains. The dimension of the input, the output
style, and the output defect are set to 16, 64, and 16 × 16 × 64, respectively. The latent code
is sampled from the standard normal distribution. Note that we apply per-pixel noise after
each convolution in the defect branch, which we have observed to increase the diversity of
generated defects significantly (cf. Table 14 (e)).
Style-Defect Encoder (Table 13). The style-defect encoder consists of a CNN (Table 13
(a)) with two branches (Table 13 (b) and (c)) as in the mapping network. Each branch has K
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Table 11: Generator architecture.
(a) Encoder

Layer Resample Norm Output Shape

Image x - - 128 × 128 × 3

Conv 1×1 - - 128 × 128 × 128
ResBlk AvgPool IN 64 × 64 × 256
ResBlk AvgPool IN 32 × 32 × 512
ResBlk AvgPool IN 16 × 16 × 512

ResBlk - IN 16 × 16 × 512
ResBlk - IN 16 × 16 × 512

(b) Background Decoder (c) Foreground Decoder

Layer Resample Norm Output Shape

Input - - 16 × 16 × 448

ResBlk - IN 16 × 16 × 448
ResBlk - IN 16 × 16 × 512
ResBlk - IN 16 × 16 × 512
ResBlk Upsample IN 32 × 32 × 512
ResBlk Upsample IN 64 × 64 × 256
ResBlk Upsample IN 128 × 128 × 448

Layer Resample Norm Output Shape

Input - - 16 × 16 × 64

ResBlk - AdaIN 16 × 16 × 64
ResBlk - AdaIN 16 × 16 × 256
ResBlk - AdaIN 16 × 16 × 256
ResBlk Upsample AdaIN 32 × 32 × 256
ResBlk Upsample AdaIN 64 × 64 × 128
ResBlk Upsample AdaIN 128 × 128 × 64

(d) Fusion

Layer Resample Norm Output Shape

Input - - 128 × 128 × (448 + 64)

Conv 1×1 - - 128 × 128 × 3

Table 12: Mapping network architecture.
(a) Shared Layers

Layer Activation Output Shape

Latent z - 16

Linear ReLU 512
Linear ReLU 512
Linear ReLU 512
Linear ReLU 512

(b) Style (c) Defect

Layer Activation Output Shape

Input - 512

Linear ReLU 512
Linear ReLU 512
Linear ReLU 512
Linear - 64

Layer Resample Activation Noise Output Shape

Input - - - 512

Reshape - - - 1 × 1 × 512
ResBlk Upsample IN True 2 × 2 × 512
ResBlk Upsample IN True 4 × 4 × 512
ResBlk Upsample IN True 8 × 8 × 256
ResBlk Upsample IN True 16 × 16 × 128
Conv 1×1 - IN True 16 × 16 × 64
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Table 13: Style-defect encoder and discriminator architectures.
(a) Shared Layers

Layer Resample Norm Output Shape

Input x - - 128 × 128 × 3

Conv 1×1 - - 128 × 128 × 64
ResBlk AvgPool - 64 × 64 × 256
ResBlk AvgPool - 32 × 32 × 512
ResBlk AvgPool - 16 × 16 × 512

(b) Style / Discriminator and BG Classifier (c) Defect / FG Classifier

Layer Resample Norm Output Shape

Input - - 16 × 16 × 512

ResBlk AvgPool - 8 × 8 × 512
ResBlk AvgPool - 4 × 4 × 512
LReLU - - 4 × 4 × 512
Conv 4×4 - - 1 × 1 × 512
LReLU - - 1 × 1 × 512
Reshape - - 512
Linear∗K - - D∗K

Layer Norm Output Shape

Input - 16 × 16 × 512

LReLU - 16 × 16 × 512
Conv 1×1∗K - 16 × 16 × 64∗K

Table 14: Ablation study in FID over all datasets. ‘Latent’, ‘Reference’ and ‘Mix’ indicate
the subnetworks and a set of mixed samples from the two subnetworks.

FID↓

Latent Reference Mix

(a) Baseline StarGAN v2 [5] 226.26 232.89 227.67
(b) + Style-defect branches 292.76 292.12 287.35
(c) + FG and BG classifier 95.33 99.84 95.81
(d) + Separately decoding FG and BG in G 115.89 99.61 101.02
(e) + Anchor domain and Noise injection 97.37 98.97 96.27

outputs, where K is the number of domains. Three pre-activation residual blocks are shared
among two branches, followed by a specific structure for each branch. The output dimension
D in Table 13 is set to 64, which denotes the dimension of the style.
Discriminator (Table 13). The discriminator is a multi-task discriminator with two auxiliary
classifiers for the foreground defect and the background. The structure is almost identical to
the style-defect encoder, except the output dimension D is set to 1 for real/fake classification.
The background classifier acts in parallel to the final linear layer in Table 13 (b) and provides
the logits for background classification. The foreground classifier instead acts on top of the
output in Table 13 (c) and four more pre-activation residual layers are applied to encode the
defect into logits for foreground defect classification.

E Additional Results

E.1 Ablation Study in FID
We report the average FID over all three datasets for each configuration in Table 14.
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Table 15: Quantitative comparison of the baseline methods on the defect classification task.
The reported values are the achieved error rates (%) and standard deviation over five runs.

Aug.
Method

Syn.
Data

EfficientNet-b4

A B C

None None 16.54±0.76 9.6±3.05 26.29±1.73
Trad None 12.55±1.49 6.8±0.84 12.76±0.52
Trad Mokady et al. [28] 14.18±1.52 8.0±1.58 17.52±1.59
Trad StarGAN v2 [5] 14.73±2.17 10.5±1.34 16.76±1.44
Trad StyleGAN2 [21] 14.55±1.11 6.4±1.14 15.81±0.85
Trad BigGAN* [2] 13.82±1.34 9.2±1.30 17.74±1.09
Trad Ours 12.00±0.76 5.0±1.58 11.43±1.78

CutMix [42] None 14.00±4.06 5.6±1.67 12.00±1.86
CutOut [7] None 10.73±0.41 7.2±2.17 13.90±2.09
MixUp [44] None 12.18±1.22 5.8±1.64 12.95±3.96
CutMix [42] Ours 14.55±1.44 3.4±1.34 17.90±2.89
CutOut [7] Ours 10.36±0.81 4.2±0.45 13.14±0.80
MixUp [44] Ours 12.00±1.00 3.6±1.52 11.81±0.85

E.2 Additional Reference-guided Image Synthesis Results on the SDI
Dataset

We provide additional reference-guided image synthesis results on the SDI dataset in Fig. 9–
Fig. 11. We demonstrate all the possible transfers among all foreground defect domains
on the purposed DT-GAN and StarGAN v2 [5]. For [28], we trained one model for each
translation and omitted some cases like Normal-to-Normal due to the lack of practical
usefulness. Both defect and style are extracted from the reference image. Note that DT-
GAN is the only model that can faithfully append and remove foreground defects onto both
Normal and defective samples. For example, in the fifth column of Fig. 9, the original
scratch in the source image is removed and only the defects from the reference images are
presented in the output images.

E.3 Additional Reference-guided Image Synthesis Results on the SDI
Dataset

Effectiveness of Synthetic Data. To demonstrate that the performance gains provided by
our synthetic data are not confined to a specific network, we also show the experiment results
with EfficientNet-b4 [38] in Table 15.

Besides, we present additional evaluations showing the effectiveness of our synthetic
data when incrementally adding more of them to the training set. Each dataset in Table 16 is
formed following the same procedure: first, the images in the Normal class are always real,
and the defective classes are either balanced by oversampling (Trad-Aug) or by synthetic
data from DT-GAN (Ours). We various the number of available Normal training images
from 1,500 to 6,200, which results in increasing dataset sizes from 4,500 to 18,600. As seen
in Table 16, the synthetic images from DT-GAN boost the performance in all scales. We
report the performance on a scale of 12,000 in the main paper.

As discussed in Section 4.2, we assumed that the data-insufficiency problem can be mit-
igated by transferring defects across multiple background products. To examine if this as-
sumption holds, we compared the performance of classifiers trained on synthetic images with
defects from a specific source (v-A, v-B, v-C) to classifiers trained on images with defects
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Figure 9: Reference-guided image synthesis results on the SDI dataset. The first row and
the first column are the real images sampled from the dataset, while the rest are synthetic
images generated by the proposed DT-GAN. Note that DT-GAN provides translations be-
tween different foreground domains (Normal, Scratches and Spots) with defects and
styles extracted from reference images while the backgrounds from source images are well
preserved. (Best viewed in color and zoom in.)
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Figure 10: Reference-guided image synthesis results of StarGAN v2 on the SDI dataset. The
first row and the first column are the real images sampled from the dataset, while the rest are
synthetic images generated by StarGAN v2. (Best viewed in color and zoom in.)

25



Figure 11: Reference-guided image synthesis results of Mokady et al. on the SDI dataset.
The first row and the first column are the real images sampled from the dataset, while the
rest are synthetic images generated by Mokady et al.. (Best viewed in color and zoom in.)

Table 16: Quantitative results for DT-GAN as a data augmentation method with an incremen-
tal number of synthetic data. The leftmost column indicates the size of the dataset, including
all images from the training set plus increasing amounts of synthetic images. In the first row,
20A refers to the case of 20 real defective samples for product A, while All refers to the full
training set.

Dataset
Size

20A

A B C

Trad-Aug Ours Trad-Aug Ours Trad-Aug Ours

4500 35.09±2.62 27.64±3.12 7.8±1.48 5.6±1.67 15.24±1.90 13.14±1.70
6600 39.64±2.28 27.64±1.65 8.8±1.64 6.2±1.64 15.81±1.73 12.38±1.65
12000 34.18±4.39 28.55±7.32 5.8±0.45 5.6±1.14 16.19±1.17 10.86±1.28
18600 39.45±7.06 32.55±5.04 7.2±0.84 5.2±1.10 14.86±0.85 13.14±2.06

Dataset
Size

All

A B C

Trad-Aug Ours Trad-Aug Ours Trad-Aug Ours

4500 16.00±1.04 10.18±1.75 8.8±0.45 5.6±1.51 17.13±6.62 14.09±2.27
6600 14.90±1.38 10.54±1.22 7.6±1.51 6.8±3.11 15.23±2.33 11.42±0.00
12000 13.81±2.36 6.72±1.65 6.8±1.64 4.6±0.00 16.57±3.20 13.90±2.57
18600 13.63±2.22 10.54±2.45 6.8±1.79 5.0±1.87 15.62±0.85 11.61±1.24
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Table 17: Cross-product defect transfer on classifiers trained with reference-guided synthetic
images at different scales. Note that here A, B and C stand for 3 products in the SDI dataset
while v-A, v-B, v-C, and v-ABC indicate the defects are copied from which reference set.

Dataset
Size

A

Trad-Aug v-A v-B v-C v-ABC

4500 16.00±1.04 12.90±2.61 13.08±1.65 14.90±2.46 15.27±3.49
6600 14.90±1.38 13.99±1.89 11.26±1.04 14.36±4.04 16.00±2.85
12000 13.81±2.36 11.81±2.65 12.72±2.87 11.99±1.63 11.09±3.49
18600 13.63±2.22 12.72±5.22 14.36±3.83 14.18±5.05 13.81±8.56

Dataset
Size

B

Trad-Aug v-A v-B v-C v-ABC

4500 8.8±0.45 7.8±2.15 5.6±1.14 10.19±0.84 6.8±1.30
6600 7.6±1.51 6.8±1.65 7.8±1.10 8.0±2.34 6.0±1.41
12000 6.8±1.64 6.4±1.34 6.6±1.52 6.6±1.34 5.6±1.34
18600 6.8±1.79 6.2±1.78 4.4±1.14 6.6±1.95 6.0±1.58

Dataset
Size

C

Trad-Aug v-A v-B v-C v-ABC

4500 17.14±4.62 14.85±0.52 16.76±2.58 13.90±1.98 12.00±1.59
6600 15.23±2.33 13.14±1.24 13.90±2.29 14.28±1.34 12.57±1.57
12000 16.57±3.20 13.14±2.81 11.23±0.80 14.85±1.73 11.42±0.96
18600 15.62±0.85 13.71±1.73 15.99±6.75 12.57±3.26 12.95±2.98

from all products (v-ABC). The results of the cross-product defect transfer with regard to
different sizes of the training set are shown in Table 17. We again notice that using our
synthetic data is beneficial. Moreover, in most cases, the performance is further improved
when the shared characteristics are used (i.e. by transferring defects from other products).
We interpret this as support for our assumption and the practical usefulness of our method in
a real-world scenario.

E.4 Data Augmentation in GANs

We provide additional results in the case of training GANs with augmentation methods in Ta-
ble 18. Augmentation methods like ADA [20] and DiffAug [46] are proposed to adapt GAN
training to limited data. We applied these two augmentation methods to StyleGAN v2 [21]
and BigGAN [2] respectively, because these state-of-the-art image synthesis methods are not
optimized for small datasets. However, incorporating the augmentation methods in training
GANs is not always beneficial. The performance of StyleGAN v2 is not always improved
when using ADA, potentially due to the conflict between augmentation methods and the de-
centralized location of defects—in the real-world scenario, defects can occur anywhere on
the surface. This is in contrast to datasets that were used to evaluate the aforementioned
augmentation methods in GANs, where the objects are centralized (e.g., ImageNet [6], Ci-
far [22]) and their attributes (e.g. beard, eyeglasses in CelebA [24]) only occur in specific
images parts. Thus, we only report the best setting with an average lower FID the in the main
paper.
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Table 18: Quantitative comparison of DT-GAN with baseline image synthesis methods using
FID. Note that the reported values are not comparable between columns, because they are
calculated on different training sets. * indicates that the model is trained with augmentation
methods.

Method

FID↓

A B C CA
RPE

T

LEATH
ER

TIL
E

W
O

O
D

M
TD

All

Mokady et al. [28] 68.69 66.9 36.21 41.87 60.26 275.12 81.71 68.30 87.38
StarGAN v2 [5] 96.85 58.28 50.95 354.31 336.63 434.77 411.37 84.49 228.46
StyleGAN2 [21] 90.1 52.95 138.09 51.37 51.6 225.96 140.01 51.39 100.18
StyleGAN2* [21] 149.66 42.75 135.69 30.63 217.83 109.06 54.09 226.68 120.80
BigGAN [2] 235.66 192.89 193.61 64.84 143.64 408.49 142.50 277.62 207.41
BigGAN* [2] 218.74 134.41 270.89 34.47 101.7 391.54 113.32 67.91 166.62
Ours 65.62 53.62 37.94 27.33 78.01 352.15 77.11 78.41 96.27

E.5 Nearest Neighbor Study

To provide an insight into the overfitting phenomenon, we performed a class-wise nearest
neighbor search among the training images in pixel space and the feature space of the pre-
trained Inception V3[37] network. We provide the nearest neighbor analysis with the full
set of products and baseline methods in Fig. 12–Fig. 15. Note that we omit the results
on StarGAN v2 due to its identity-shift problem. As mentioned in the main paper, all the
baseline methods show signs of overfitting and suffering from mode collapsing, especially
[28] and [21]. We believe this explains the better ID reported in Table 1. In contrast, our
method produces visually distinct defects from its nearest neighbor. Together with the FIDs
reported in quantitative evaluation, we believe our method achieves better performance due
to the fact that it allows free combinations of foreground defects and backgrounds, making
the generated images more diverse whereas restraining model overfitting even with a small
number of training samples.

E.6 More Qualitative Examples on ‘Latent-guided’ and
‘Reference-guided’ Image Synthesis

We present additional ‘latent-guided’ image synthesis results of StyleGAN v2 in Fig. 16
and Fig. 17 and BigGAN in Fig. 18 and Fig. 19. The results are acquired by training one
model for each product and then generating 16 images from randomly sampled latent codes
from each of them. As pointed out in Section 4.1, both methods cannot adapt well to small
datasets. They suffer from mode collapsing and show signs of overfitting by generating
images similar to the training data. For example, StyleGAN v2 generates images either with
no clear defect or identical to the training set (e.g. LEATHER in Fig. 16 and Product B in
Fig. 17). The overfitting we observe here also explains the better FID in Table 1. For TILE,
we can see clear signs of mode collapsing in the generated TILE images of StyleGAN v2.
Similarly, BigGAN produces images with a single mode and abnormal patterns (e.g. grid
structure and gray edges). Unlike StyleGAN v2 and BigGAN, StarGAN v2 and our method
both require images as input (i.e. Source). Therefore, we randomly sampled two Normal
images and applied eight defects, which are generated from randomly sampled latent codes
to each of them. As seen in Fig. 20 and Fig. 21, StarGAN v2 fails to preserve the background
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(a) Product A (FID: 90.1) (b) Product B (FID: 52.95)

(c) Product C (FID: 138.09) (d) CARPET (FID: 34.47)

(e) LEATHER (FID: 51.6) (f) TILE (FID: 225.96)

(g) WOOD (FID: 140.01) (h) MTD (FID: 51.39)

Figure 12: Nearest neighbor analysis on generated images from StyleGAN2. The first row
in each subgraph presents the generated samples and the following two columns show their
nearest neighbor from the training set in pixel space and latent space respectively. (Best
viewed in color and zoom in.)
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(a) Product A (FID: 218.74) (b) Product B (FID: 134.41)

(c) Product C (FID: 270.89) (d) CARPET (FID: 34.47

(e) LEATHER (FID: 101.7) (f) TILE (FID: 391.54)

(g) WOOD (FID: 113.32) (h) MTD (FID: 67.91)

Figure 13: Nearest neighbor analysis on generated images from BigGAN with DiffAug. The
first row in each subgraph presents the generated samples and the following two columns
show their nearest neighbor from the training set in pixel space and latent space respectively.
(Best viewed in color and zoom in.)
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(a) Product A (FID: 68.69) (b) Product B (FID: 66.9)

(c) Product C (FID: 36.21) (d) CARPET (FID: 41.87)

(e) LEATHER (FID: 60.26) (f) TILE (FID: 275.12)

(g) WOOD (FID: 81.71) (h) MTD (FID: 68.3)

Figure 14: Nearest neighbor analysis on generated images from Mokady et al.[28]. The first
row in each subgraph presents the generated samples and the following two columns show
their nearest neighbor from the training set in pixel space and latent space respectively. (Best
viewed in color and zoom in.)
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(a) Product A (FID: 65.62) (b) Product B (FID: 53.62)

(c) Product C (FID: 37.94) (d) CARPET (FID: 27.33)

(e) LEATHER (FID: 78.01) (f) TILE (FID: 352.15)

(g) WOOD (FID: 77.11) (h) MTD (FID: 78.41)

Figure 15: Nearest neighbor analysis on generated images from DT-GAN. The first row in
each subgraph presents the generated samples and the following two columns show their
nearest neighbor from the training set in pixel space and latent space respectively. (Best
viewed in color and zoom in.)
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from the given input images due to the highly entangled foreground and background. Also,
it fails to generate legit and diverse defects without separately modeling the defect and the
style. In contrast to the aforementioned methods, our DT-GAN produces images with higher
fidelity and more diversity in defect patterns as shown in Fig. 22 and Fig. 23. We believe this
again proves the importance of FG/BG disentanglement and style-defect separation, which
we introduce in Section 3.1.

For ‘reference-guided’ image synthesis, the additional results of [28] are shown in Fig. 24
and Fig. 25 while the results of StarGAN v2 are in Fig. 26 and Fig. 27. We can observe clear
color shifts in all the outputs from [28]. Moreover, [28] can only transfer defect between two
domains. In order to perform translation from a non-defective sample to a defective one, we
trained a model for each type of defect and for each product. This sums up to be 15 models
(Scratches and Spots for 7 categories and Scratches only for TILE). The results
from the intended translation within a single product can be found on the diagonal and are
marked in red in both Fig. 24 and Fig. 25. We still show the generated images that we obtain
for reference images from other products. As expected, the model then fails to preserve the
background of given source images and introduces artifacts to the outputs.

Similarly, StarGAN v2 does not preserve the background from the input images. We ob-
serve that StarGAN v2 encodes the background characteristics together with the foreground
defect of the reference images due to the lack of style-defect separation and FG/BG disen-
tanglement. This results in identity shits in its output images. Moreover, the output images
either show no clear defect or contain abnormal patterns which sabotage the fidelity. On the
contrary, our method can faithfully transfer the foreground defect of the reference images
across the given background of different products as shown in Fig. 28 and Fig. 29, which
demonstrates the effectiveness of the style-defect separation and the FG/BG disentanglement
we introduced in Section 3.1.

It is also worth noting that our method can perform image synthesis even if the desired
combination is not presented in the training set. We demonstrate this on product TILE, which
only has training images with Scratches but no Spots. As shown in Fig. 23 and Fig. 29,
DT-GAN can generate spots on given TILE images. This kind of transformation is most
useful when the new combination is reasonable for downstream applications.
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Figure 16: Latent-guided image synthesis results of StyleGAN v2 on all three datasets. We
train a model for each product and generate 16 Scratches images from randomly sampled
latent codes. (Best viewed in color and zoom in.)
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Figure 17: Latent-guided image synthesis results of StyleGAN v2 on all three datasets. We
train a model for each product and generate 16 Spots images from randomly sampled latent
codes. (Best viewed in color and zoom in.)
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Figure 18: Latent-guided image synthesis results of BigGAN with DiffAug on all three
datasets. We train a model for each product and generate 16 Scratches images from
randomly sampled latent codes. (Best viewed in color and zoom in.)
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Figure 19: Latent-guided image synthesis results of BigGAN with DiffAug on all three
datasets. We train a model for each product and generate 16 Spots images from randomly
sampled latent codes. (Best viewed in color and zoom in.)
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Figure 20: Latent-guided image synthesis results of StarGAN v2 on all three datasets. The
model performs translation from Normal to Scratches. Note that without the style-
defect separation and the FG/BG disentanglement, StarGAN v2 not only fails to preserve
the background from the given Source image but also fails to generate legit defects. (Best
viewed in color and zoom in.)
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Figure 21: Latent-guided image synthesis results of StarGAN v2 on all three datasets. The
model performs translation from Normal to Spots. Note that without the style-defect
separation and the FG/BG disentanglement, StarGAN v2 not only fails to preserve the back-
ground from the given Source image but also fails to generate legit defects. (Best viewed in
color and zoom in.)
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Figure 22: Latent-guided image synthesis results of DT-GAN on all three datasets. The
model performs translation from Normal to Scratches. Note that our model takes input
Source images as background and only synthesizes the foreground defects from randomly
sampled latent code compared to StyleGAN v2 and BigGAN. (Best viewed in color and
zoom in.))
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Figure 23: Latent-guided image synthesis results of DT-GAN on all three datasets. The
model performs translation from Normal to Spots. Note that our model takes input
Source images as background and only synthesizes the foreground defects from randomly
sampled latent code compared to StyleGAN v2 and BigGAN. (Best viewed in color and
zoom in.)
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Figure 24: Reference-guided image synthesis results of Mokady et al. on all three datasets.
We train a model for each product and each defect type. Then we translate Normal images
to Scratches by taking the Source as background and applying the foreground defect
from Reference to it. Note that the results from the intended translation within a single
product can be found on the diagonal and are marked in red. (Best viewed in color and zoom
in.)
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Figure 25: Reference-guided image synthesis results of Mokady et al. on all three datasets.
We train a model for each product and each defect type. Then we translate Normal images
to Spots by taking the Source as background and applying the foreground defect from
Reference to it. Note that the results from the intended translation within a single product
can be found on the diagonal and are marked in red. (Best viewed in color and zoom in.)
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Figure 26: Reference-guided image synthesis results of StarGAN v2 on all three datasets.
The model performs translation from Normal to Scratches by taking the Source as
background and applying the foreground defect from Reference to it. Note that without
the style-defect separation and the FG/BG disentanglement, StarGAN v2 not only fails to
preserve the background from the given Source image but also fails to generate legit defects.
(Best viewed in color and zoom in.)
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Figure 27: Reference-guided image synthesis results of StarGAN v2 on all three datasets.
The model performs translation from Normal to Spots by taking the Source as back-
ground and applying the foreground defect from Reference to it. Note that without the
style-defect separation and the FG/BG disentanglement, StarGAN v2 not only fails to pre-
serve the background from the given Source image but also fails to generate legit defects.
(Best viewed in color and zoom in.)
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Figure 28: Reference-guided image synthesis results DT-GAN on all three datasets. The
model performs translation from Normal to Scratches by taking the Source as back-
ground and applying the foreground defect from Reference to it. (Best viewed in color and
zoom in.)
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Figure 29: Reference-guided image synthesis results of DT-GAN on all three datasets. The
model performs translation from Normal to Spots by taking the Source as background
and applying the foreground defect from Reference to it. (Best viewed in color and zoom
in.)
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