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Abstract

Domain generalization focuses on generalizing a model learned from multiple source
domains to the unseen target domain. Assuming the target domain has different distribu-
tion from the source domains, most methods addressed the out-of-domain generalization
issue but slightly concern the in-domain performance on the source domains. Because the
target domain is unseen and may distribute similarly with the source domains, we believe
both the in-domain and out-of-domain performances are equally important. In addition,
the noisy ground truth labels in the source domains also raises serious concerns on model
robustness. Therefore, in this paper, we propose a contrastive learning framework with
prototype alignment and collaborative attention to address the robust in-domain and out-
of-domain generalization issue for image classification. We first design a margin-based
contrastive learning to boost the out-of-domain performance by pushing the ambiguous
classes apart by at least a margin. Next, we propose using prototype alignment to support
the in-domain performance by aligning the latent feature representation of each class to
the corresponding class prototype. Finally, we propose a novel collaborative attention
method by leveraging the strength from both positive and negative learnings to enhance
the model robustness. Experimental results on two benchmarks show that our method
achieves competitive in-domain performance and outperforms previous methods in the
out-of-domain and noisy label scenario.

1 Introduction
Although deep learning based methods [5, 9, 15] have achieved a great success in many
computer vision tasks, these methods usually rely on i.i.d. assumption for data distributions
and often have degraded performance when testing on out-of-domain data. This domain shift
problem has been extensively studied in domain generalization (DG) through, e.g., domain
alignment [8, 17, 20], data augmentation [23, 26], and regularization-based methods [2, 12].
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Figure 1: Illustration of the proposed idea:
(a) margin-based contrastive learning for out-
of-domain generalization, (b) prototype align-
ment for in-domain generalization, and (c)
collaborative learning for improving model
robustness.

Existing DG methods mostly focused
on learning a model to well generalize
to out-of-distribution data but hardly ad-
dressed the in-domain performance on the
source domains. Because the target do-
main is unseen and that its data distribu-
tion is totally unpredictable, we believe
the in-domain generalization is as impor-
tant as out-of-domain generalization. Sev-
eral methods [20, 23, 24] have indeed ad-
dressed the in-domain issue. In [23], a data
augmentation-based method has been pro-
posed to mix the domain distributions by
linearly interpolating the training data and
the labels. In [24], the authors proposed
to boost in-domain performance by replac-
ing some informative image regions with
patches from other images. The methods
[23, 24], though achieved good in-domain
performance, did not reach good out-of-
domain generalization. On the other hand,
the method in [20], which addressed the
out-of-domain generalization by minimiz-
ing the differences of feature distributions
between multiple source domains, is not equally effective on in-domain generalization.

In addition, noisy labels in source domains also raise a practical concern to domain gen-
eralization. In particular, the ground truth labels are usually collected by outsourcing ser-
vices and are prone to human errors. These noisy “ground-truth” labels inevitably lead to
performance drop and require special attention.

Therefore, in this paper, we consider the domain generalization scenario with noisy
source labels and aim to simultaneously tackle the in-domain and out-of-domain general-
ization issues. This scenario is very challenging because there usually exists a trade-off
between in-domain and out-of-domain performances. Our proposed method, as illustrated
in Fig. 1, includes three major ideas. First, in Fig. 1 (a), we focus on improving out-of-
domain performance by identifying the highly overlapped or ambiguous classes in the latent
space and then pushing them apart by at least a margin. Second, in Fig. 1 (b), to promote
in-domain performance, we explicitly align the source data of the same class but from differ-
ent domains to the corresponding class prototype Dproto so as to learn the domain-agnostic
and class-discriminative feature representation. Finally, in Fig. 1 (c), we take advantage of
both positive and negative learnings to strengthen the model robustness against label noises.
Here, “◦” and “×” indicate whether the corresponding class labels are involved in the model
training or not. When including both the ground truth label and the complementary labels,
we offer the model with informative supervision and readily improve the model robustness.

Our contributions are summarized as follows:

• We introduce a challenging scenario for achieving robust in-domain and out-of-domain
generalization. To the best of our knowledge, this is the first work focusing on address-
ing these issues.
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Figure 2: The proposed contrastive learning framework with prototype alignment and col-
laborative attention.

• The proposed contrastive learning framework together with prototype alignment and
collaborative attention cooperatively fulfills the three main goals of this scenario.

• Experimental results show that the proposed method outperforms existing methods
under three evaluation protocols on two benchmark datasets.

2 Proposed Method

In this paper, we address the robust domain generalization problem for image classification.
Let S = {Di} denote the set of source domains, where the i-th domain Di =

{
(x j,y j)

}Ni
j=1

contains Ni annotated samples x j with the ground truth label y j ∈ {1,2, ...,C}. Our goal is to
train an image classification model f which should generalize to any unseen target domain
T and perform well in the source domains S. The model f should also be robust against
label noises in the source domains S. As shown in Fig. 2, we decompose the model f into
one feature extractor g and one classifier h by f = h ◦ g and propose a contrastive learning
framework with prototype alignment and collaborative attention to simultaneously achieve
the three goals.

2.1 Margin-Based Contrastive Learning

Contrastive learning [18] has been adopted in domain generalization for classification tasks
by minimizing the sample distance between intra-class pairs and maximizing the distance
between inter-class pairs. However, because contrastive learning is conducted within one
mini-batch, the performance and model stability highly depend on the quality of in-batch
samples. In particular, when learning from multiple source domains, the intra-class pairs
from different source domains may lead to unstable learning directions because of the do-
main shift. Thus, the inter-class pairs play a more important role in contrastive learning and
should be carefully selected during the training stage.
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In this paper, we design a margin-based contrastive learning in a per-sample manner
and focus on identifying and separating those classes which frequently cause ambiguity to
the classification model. To this end, for each input (x,y), we first find a set of ambiguous
classes by selecting K classes that yield the highest prediction scores by f (.). Next, we
constrain all the samples with the same class label y as x to be distant from these top-K
ambiguous classes by at least a margin η . Thus, we define the margin ranking loss Lmargin
as follows:

Lmargin = ∑
(x,y)

∑
k∈Ky

max(η −|θ( f (x),y)−θ( f (x),k)| ,0) , (1)

where θ( f (x),y) is the yth component of the C-dimensional prediction vector f (x), and Ky
is the set of top-K ambiguous classes of the class label y.

2.2 Prototype Alignment
Next, we address the in-domain generalization issue by prototype alignment. Here, our goal
is to learn feature representation which possess both domain-agnostic and class-discriminative
characteristics. To achieve these two objectives, we first define the class prototype mc as the
centroid of the corresponding class c in the latent space. Next, we obtain the latent rep-
resentation of each class by a projection head Pro j(·) and then align the projected class
representation to the corresponding class prototype. With this class-wise alignment, we en-
force the model to preserve the class-discriminative characteristics while aligning multiple
source domains.

During the training stage, we update the class prototypes mc by moving average with the
in-batch class representation by,

mc(t) =
1

Nc(t)
(Nc(t −1)mc(t −1)+ ∑

∀(x,y), y=c
Pro j(g(x))) , (2)

where Pro j(·) is the projection head consisting of a two-layer MLP, t is the training step,
and Nc is the number of samples in the class c.

Finally, we define the prototype alignment loss Lalign by,

Lalign =
C

∑
c=1

∑
∀(x,y), y=c

∥Pro j(g(x))−mc(t)∥2 . (3)

2.3 Collaborative Attention
To enhance the model robustness against noisy labels, we propose a novel collaborative at-
tention, in terms of positive learning and negative learning, to supervise the model learning.
In classification task, positive learning is popularly used to train the model by minimizing
the discrepancy between the prediction and the ground truth label. To resolve the noisy label
issue, negative learning [14] has been proposed by minimizing the discrepancy between the
complementary prediction and the negative label. Because complementary labels are less
sensitive to label noises than the single ground-truth label, collaboration of positive learn-
ing and negative learning has been shown [14] to effectively improve the model robustness.
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However, in the domain generalization scenario, the domain gap between multiple sources
often diminishes the strength of both positive and negative learnings. In addition, by enforc-
ing the model to fit to either the ground truth labels and/or the complementary labels, we risk
compromising the domain generalization ability.

To resolve the above-mentioned problem, we propose to include a dilated positive atten-
tion and an extended negative attention to collaboratively supervise the model learning. We
first identify the positive and negative attention maps of each class by the gradient responses.
Given an input (x,y), we assign its ground truth y as the positive label y+ and randomly
select one complementary class as its negative label y−; here, both y+ and y− are presented
by one-hot vector. Let z = g(x) be the extracted features of x. We obtain the positive and
negative attention maps of x by,

M+(α) = 1grad+≥α
, (4)

M−(β ) = 1grad−≥β
, (5)

where

grad+ =
∂h(z) · y+

∂ z
, (6)

grad− =
∂h(z) · y−

∂ z
. (7)

In Equations (4) and (5), 1 denotes the indicator function, α and β are the pth percentiles of
grad+ and grad−, respectively.

Then, to augment the representation capacity of each class, we propose using dilated
positive attention by enlarging the attention map M+ using a dilation module. The dilation
module includes spatial and channel dilations using a fixed dilation kernel size. Then we av-
erage the two dilated outputs to derive the dilated attention. In our experiments, we adopt the
convolution blocks with 2D-Maxpooling and 1D-Maxpooling with kernel size 3 for spatial
and channel dilations, respectively, to construct the dilation module. Then, in terms of the
dilated positive attention dil(M+), we define the positive loss Lpos by,

Lpos = Lce(h(z+);y+) , (8)

where Lce(·) is the cross-entropy loss, z+ = z⊙ dil(M+) is the feature map masked by the
dilated attention dil(M+), and ⊙ is the element-wise product.

As to the negative learning, we propose an extended negative attention by combining
both the negative attention M− and non-positive attention (1−M+) as the complementary
prediction. The negative attention M− supports the capability of negative learning for the
randomly selected class y−; and the non-positive attention (1−M+) excludes the positive
class y+ from the negative learning and further enhances the capability of negative learning.
We define the negative loss Lneg by,

Lneg = Lce(h(A(z−));y−) , (9)

where A is a self-attention module implemented by CBAM [22], and

z− = z⊙ (
1
2

M−+
1
2
(1−M+)) (10)
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is the feature map masked by the negative and non-positive attentions. Then we define the
collaborative loss by

Lcollab = Lpos +λ
−Lneg , (11)

where λ− is a hyper-parameter and is set to be 0.2 in our experiments.

2.4 Total Loss
Finally, we include the image classification loss for the in-domain data (x,y) by,

Lmain = Lce(h(A(z));y) . (12)

where Lce(·) is the cross-entropy loss, and A(·) is the self-attention module. Here A(·) is
included to maintain the in-domain performance.

By combining the classification loss Lmain, the margin ranking loss Lmargin, the prototype
alignment loss Lalign, and the collaborative loss Lcollab, we define the total loss Lall by,

Lall = Lmain +λ1Lmargin +λ2Lalign +λ3Lcollab , (13)

where λi are the hyper-parameters.

3 Experiments

3.1 Datasets and Evaluation Metrics

We conduct experiments on two image classification benchmarks PACS and VLCS. PACS [16]
contains 4 domains, 7 classes, and 9991 examples; and VLCS [6] includes 4 domains, 5
classes, and 10729 examples. We evaluate the model performance in terms of two metrics:
in-domain accuracy (ID) and out-of-domain accuracy (OOD) under two noisy-label proto-
cols symm inc and symm exc. To evaluate ID, we follow [3] to split half of the validation sets
as test sets and measure the averaged accuracy on the test sets. To evaluate OOD, we con-
duct the leave-one-domain-out protocol with model selection by training-domain validation
set [10] and report the averaged accuracy on the test domains. To simulate the label noises,
we follow [14] and use the symmetric noise protocols symm inc and symm exc with ratio 0.2
and 0.4 to perturb the labels.

3.2 Implementation Details

We adopt ResNet-18 [11] and ResNet-50 [11] as backbones in our experiments. The hyper-
parameters λ1, λ2, and λ3 in Equation (13) are set as 0.01, 0.05, and 0.05, respectively.
To have a fair comparison, we follow the recent domain generalization test-bench [10] and
set the batch-size to be 8 for each domain in all of our experiments. Because the recent
ensemble-based techniques [1, 3, 13] effectively improve the domain generalization ability,
we evaluate our method with SWAD [3] and also report the results without SWAD for com-
parison. All the experiments are performed with 3 trials of different random seeds and the
averaged results are reported.
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Components ResNet-50
Lmain Lcollab Lmargin Lalign ID OOD
✓ 97.89 ± 0.18 86.90 ± 0.30
✓ ✓ 97.36 ± 0.86 86.97 ± 0.79
✓ ✓ 97.60 ± 0.17 87.13 ± 0.36
✓ ✓ 97.57 ± 0.24 86.84 ± 0.14
✓ ✓ ✓ 97.68 ± 0.32 87.45 ± 0.12
✓ ✓ ✓ 97.56 ± 0.33 87.66 ± 0.37
✓ ✓ ✓ ✓ 97.80 ± 0.54 87.68 ± 0.48

Table 1: Ablation study of our modules
on PACS for in-domain (ID) and out-of-
domain (OOD) metrics with SWAD.

Lcollab
In-Domain Out-of-Domain

0 0.4 drop 0 0.4 drop
97.68 ± 0.32 95.67 ± 0.70 -2.01 87.45 ± 0.12 83.32 ± 1.44 -4.13

✓ 97.80 ± 0.54 96.04 ± 0.59 -1.76 87.68 ± 0.48 84.55 ± 0.45 -3.13

Table 2: Ablation study of collaborative at-
tention on PACS for metrics against symm
exc label noises with SWAD.

(a) (b)

Figure 3: t-SNE visualization for out-of-domain data on PACS with
ResNet-18. (a) ERM [21]; (b) Our contrastive learning framework.

3.3 Ablation Study

In Table 1 and Table 2, we verify the effectiveness of each component in the proposed method
on PACS using ResNet-50 backbone with SWAD.

Effectiveness of Collaborative Attention. As shown in Table 1, when including the nega-
tive loss in the collaborative attention, we improve the averaged out-of-domain performance
by 0.07%. In addition, when further combining with the other two modules, we boost the
averaged out-of-domain performance by 0.23%. These results show that our collaborative
attention fully utilizes the information from positive and negative classes to improve the
model generalizability. In Table 2, when including the collaborative attention module in our
framework, we effectively avoid the performance drop on both in-domain and out-of-domain
evaluation metrics. These results validate the effectiveness of the proposed collaborative at-
tention.

Effectiveness of Margin-Based Contrastive Learning. In Table 1, when including the
margin-based contrastive learning, we improve the averaged performance by 0.23%. When
the collaborative attention is included, we improve the average performance from 86.97%
to 87.66% and have +0.69% improvement for out-of-domain performance with ResNet-50.
These results verify that the proposed margin-based contrastive learning effectively separates
the ambiguous classes.

Effectiveness of Prototype Alignment. As shown in Table 1, when the prototype alignment
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Method PACS VLCS Avg.
ERM [21] 97.75 ± 0.41 87.21 ± 0.72 92.48

CORAL [20] 97.64 ± 0.33 86.88 ± 0.87 92.26
RSC [12] 97.01 ± 0.58 86.48 ± 0.54 91.75

SagNet [19] 97.53 ± 0.40 86.86 ± 0.83 92.20
Mixup [23] 97.92 ± 0.54 86.89 ± 0.93 92.41

Mixstyle [26] 97.31 ± 0.68 86.89 ± 0.92 92.10
ARM [25] 97.86 ± 0.45 87.08 ± 0.95 92.47
SAM [7] 97.84 ± 0.27 86.20 ± 0.55 92.02
MIRO [4] 97.74 ± 0.11 87.57 ± 1.00 92.66

Ours 97.80 ± 0.54 87.43 ± 0.82 92.62

Table 3: Comparison for in-domain performance with SWAD using ResNet-50.

Method PACS VLCS Avg.
ERM [21] 83.43 ± 0.67 76.52 ± 0.64 79.98

CORAL [20] 83.13 ± 0.74 76.68 ± 0.61 79.90
RSC [12] 81.98 ± 1.05 75.61 ± 0.79 78.79

SagNet [19] 81.40 ± 0.27 76.20 ± 1.02 78.80
Mixup [23] 81.76 ± 1.49 76.83 ± 1.55 79.30

Mixstyle [26] 82.92 ± 0.36 76.04 ± 1.37 79.48
ARM [25] 83.55 ± 1.27 75.18 ± 1.14 79.36
SAM [7] 83.93 ± 1.65 77.00 ± 1.60 80.46
MIRO [4] 84.14 ± 0.32 77.96 ± 0.94 81.05

Ours 83.87 ± 0.57 78.59 ± 0.70 81.23

Table 4: Comparison for out-of-domain
performance without SWAD using ResNet-
50.

Method PACS VLCS Avg.
ERM [21] 87.56 ± 0.33 78.13 ± 0.16 82.85

CORAL [20] 87.40 ± 0.19 78.20 ± 0.26 82.80
RSC [12] 84.04 ± 0.67 77.99 ± 0.27 81.02

SagNet [19] 86.52 ± 0.63 77.82 ± 0.22 82.17
Mixup [23] 85.90 ± 0.08 78.61 ± 0.14 82.26

Mixstyle [26] 86.15 ± 0.41 78.00 ± 0.39 82.08
ARM [25] 87.31 ± 0.16 78.10 ± 0.25 72.71
SAM [7] 86.28 ± 0.37 78.19 ± 0.26 82.23
EoA [1] 87.55 78.86 83.21

MIRO [4] 87.57 ± 0.21 79.08 ± 0.35 83.33
Ours 87.68 ± 0.48 79.27 ± 0.26 83.48

Table 5: Comparison for out-of-domain
performance with SWAD using ResNet-50.

is applied along with other modules, we boost the in-domain performance from 97.56%
to 97.80% (+0.24%) and increase the out-of-domain performance by 0.02% with ResNet-
50. Although the out-of-domain performance only slightly improves, the improvement on
in-domain performance shows that the proposed prototype alignment indeed enables the
model to learn domain-agnostic and class-discriminative characteristics by aligning the class
representation of different domains.

Visualization. Fig. 3 shows the t-SNE visualization on PACS dataset and compares with
ERM [21]. Here, we adopt the leave-one-domain-out protocol and show the results of test-
ing on the target domain cartoon by using different colors to indicate different classes. The
visualization results show that our method produces well-separated class-wise clusters in
the out-of-domain setting and validate the effectiveness of the proposed margin-based con-
trastive learning framework.

3.4 Comparison

In-Domain Performance. Table 3 shows the in-domain performance on the two benchmarks
and compares with other methods which also adopted the same network backbone (ResNet-
50) as ours. The results on in-domain testing show that the proposed method is competitive
with the state-of-the-art method [4] and verify the effectiveness of our method on maintaining
good in-domain performance.

Out-of-Domain Performance. In Table 4, we show the out-of-domain performance and
compare with other methods. The proposed method improves ERM [21] by +0.44% in
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Method
symm inc symm exc

In-Domain Out-of-Domain In-Domain Out-of-Domain
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 0 0.2 0.4

ERM [21] 97.75 ± 0.41 97.35 ± 0.50 96.15 ± 0.51 87.56 ± 0.33 86.34 ± 0.19 84.72 ± 0.81 97.75 ± 0.41 97.16 ± 0.44 95.76 ± 0.64 87.56 ± 0.33 86.20 ± 0.38 83.94 ± 0.81
RSC [12] 97.01 ± 0.58 96.40 ± 0.82 95.11 ± 0.76 84.04 ± 0.67 82.91 ± 0.92 78.62 ± 1.04 97.01 ± 0.58 96.34 ± 0.54 94.32 ± 1.16 84.04 ± 0.67 82.29 ± 0.93 76.80 ± 2.88

Mixup [23] 97.92 ± 0.54 97.23 ± 0.46 96.37 ± 0.44 85.90 ± 0.08 85.36 ± 0.43 84.13 ± 0.52 97.92 ± 0.54 96.87 ± 0.56 95.75 ± 0.40 85.90 ± 0.08 84.96 ± 0.25 83.24 ± 0.46
SagNet [19] 97.53 ± 0.40 97.05 ± 0.66 96.40 ± 0.82 86.52 ± 0.63 85.50 ± 0.31 83.60 ± 0.51 97.53 ± 0.40 96.84 ± 0.64 95.86 ± 0.86 86.52 ± 0.63 85.94 ± 0.20 82.85 ± 0.49
CutMix [24] 97.77 ± 0.16 97.32 ± 0.20 96.15 ± 0.59 85.31 ± 0.26 84.58 ± 0.63 82.50 ± 0.53 97.77 ± 0.16 97.08 ± 0.38 95.78 ± 0.62 85.31 ± 0.26 84.29 ± 0.61 81.75 ± 0.40

SAM [7] 97.84 ± 0.27 97.17 ± 0.38 96.16 ± 0.55 86.28 ± 0.37 85.65 ± 0.40 83.66 ± 0.20 97.84 ± 0.27 97.28 ± 0.48 95.12 ± 0.60 86.28 ± 0.37 85.66 ± 0.20 82.12 ± 1.05
Ours 97.80 ± 0.54 97.35 ± 0.38 96.58 ± 0.48 87.68 ± 0.48 86.22 ± 0.57 84.92 ± 0.70 97.80 ± 0.54 97.33 ± 0.74 96.04 ± 0.59 87.68 ± 0.48 86.20 ± 0.16 84.55 ± 0.45

Table 6: Comparison on PACS for in-domain and out-of-domain metrics against symm inc
and symm exc label noises with SWAD using ResNet-50.

PACS and +2.07% in VLCS, and achieves +0.18% improvement of averaged PACS and
VLCS over the state-of-the-art method [4]. In addition, because SWAD [3] has been shown
to be a state-of-the-art flatness-aware optimizer, we also evaluate the proposed method using
SWAD and show the comparisons with other methods in Table 5. The results show that
when including SWAD, the proposed method outperforms all the other methods and achieves
+0.15% averaged improvement over MIRO [4] on two benchmarks.

Model Robustness. In Table 6, we report the comparison results under the two protocols
symm inc and symm exc. The results show that the proposed method outperforms other
competitors on both protocols and verify the robustness of our model against severe label
noises.

4 Conclusion

In this paper, we propose a novel contrastive learning framework with prototype alignment
and collaborative attention for robust in-domain and out-of-domain generalization. The pro-
posed margin-based contrastive learning resolves the inter-class ambiguity and improves the
out-of-domain generalizability. In addition, the proposed prototype alignment reduces the
in-domain discrepancy by matching the latent feature representation of each class to the cor-
responding class prototype. Finally, the proposed collaborative attention method, by com-
bining the dilated positive attention and the extended negative attention, effectively strength-
ens the model robustness. Experimental results on two benchmarks show that the proposed
framework not only improves the baseline in terms of in-domain and out-of-domain evalua-
tion metrics but also provides improved robustness against noisy labels.
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