Towards Robust In-Domain and Out-of-Domain Generalization: Contrastive Learning with Prototype Alignment and Collaborative Attention

Yuan-Jhe Kuo, Cheng-Yu Yang, and Chiou-Ting Hsu National Tsing Hua University, Taiwan

Robust Domain Generalization

Proposed Framework

Goal

- Robust image classification model
 - Good out-of-domain performance ullet
 - Good in performance
 - Robust to noisy source labels

Idea of domain generalization

- Reducing class ambiguities
- Preserving in-domain class distributions 2.
- Increasing robustness by collaborative learning

C_1 C_2 D_1 D_2 Proposed Method **Margin-Based Contrastive Learning** • **Prototype Alignment** Push away highly overlapped classes Maintain intra-class features Margin-Based Contrastive Learning Prototype Alignment $\mathbf{\star}$ 🗡 η D_2 D_1 C_1 C_2 Lalign L_{margin} $max(\eta - |\theta(f(x),y) - \theta(f(x),k)|, 0)$ $\left\| Proj(g(x)) - m_c(t) \right\|_2$ $(\overline{x,y})$ $\overline{k \in K_{y}}$ $\overline{c=1} \forall (x,y), y=c$

Collaborative Attention Combine positive and negative learning

Positive feature: $z^+ = z \odot dil(M^+)$

Negative feature:
$$z^{-} = z \odot (\frac{1}{2}M^{-} + \frac{1}{2}(1 - M^{+}))$$

Cross-entropy:

$$L_{pos} = L_{ce}(h(z^+); y^+)$$

 $L_{neg} = L_{ce}(h(A(z^{-})); y^{-})$

$$L_{all} = L_{main} + \lambda_1 L_{margin} + \lambda_2 L_{align} + \lambda_3 L_{collab}$$

Method	PACS	VLCS	Avg.	Method	PACS	VLCS	Avg.
ERM [21]	97.75 ± 0.41	87.21 ± 0.72	92.48	ERM [21]	87.56 ± 0.33	78.13 ± 0.16	82.85
CORAL [20]	97.64 ± 0.33	86.88 ± 0.87	92.26	CORAL [20]	87.40 ± 0.19	78.20 ± 0.26	82.80
RSC [12]	97.01 ± 0.58	86.48 ± 0.54	91.75	RSC [12]	84.04 ± 0.67	77.99 ± 0.27	81.02
SagNet [19]	97.53 ± 0.40	86.86 ± 0.83	92.20	SagNet [19]	86.52 ± 0.63	77.82 ± 0.22	82.17
Mixup [23]	97.92 ± 0.54	86.89 ± 0.93	92.41	Mixup [23]	85.90 ± 0.08	78.61 ± 0.14	82.26
Mixstyle [26]	97.31 ± 0.68	86.89 ± 0.92	92.10	Mixstyle [26]	86.15 ± 0.41	78.00 ± 0.39	82.08
ARM [25]	97.86 ± 0.45	87.08 ± 0.95	92.10	ARM [25]	87.31 ± 0.16	78.10 ± 0.25	72.71
	07.00 ± 0.43	07.00 ± 0.95	02.02	SAM [7]	86.28 ± 0.37	78.19 ± 0.26	82.23
SAM [7]	97.84 ± 0.27	86.20 ± 0.55	92.02	EoA [1]	87.55	78.86	83.21
MIRO [4]	97.74 ± 0.11	87.57 ± 1.00	92.66	MIRO [4]	87.57 ± 0.21	79.08 ± 0.35	83.33
Ours	97.80 ± 0.54	87.43 ± 0.82	92.62	Ours	$\textbf{87.68} \pm \textbf{0.48}$	$\textbf{79.27} \pm \textbf{0.26}$	83.48

t-SNE visualization

In-domain Testing (w/ SWAD)

Out-of-domain Testing (w/ SWAD)

Components				ResNet-50		
Lmain	L _{collab}	Lmargin	Lalign	ID	OOD	
\checkmark				97.89 ± 0.18	86.90 ± 0.30	
 ✓ 	\checkmark			97.36 ± 0.86	86.97 ± 0.79	
✓		\checkmark		97.60 ± 0.17	87.13 ± 0.36	
 ✓ 			\checkmark	97.57 \pm 0.24	86.84 ± 0.14	
 ✓ 		\checkmark	\checkmark	97.68 ± 0.32	87.45 ± 0.12	
✓	\checkmark	\checkmark		97.56 ± 0.33	87.66 ± 0.37	
 ✓ 	\checkmark	\checkmark	\checkmark	97.80 ± 0.54	87.68 ± 0.48	

	symm inc							
Method		In-Domain		Out-of-Domain				
	0	0.2	0.4	0	0.2	0.4		
ERM [21]	97.75 ± 0.41	97.35 ± 0.50	96.15 ± 0.51	87.56 ± 0.33	$\textbf{86.34} \pm \textbf{0.19}$	84.72 ± 0.81		
RSC [12]	97.01 ± 0.58	96.40 ± 0.82	95.11 ± 0.76	84.04 ± 0.67	82.91 ± 0.92	78.62 ± 1.04		
Mixup [23]	97.92 ± 0.54	97.23 ± 0.46	96.37 ± 0.44	85.90 ± 0.08	85.36 ± 0.43	84.13 ± 0.52		
SagNet [19]	97.53 ± 0.40	97.05 ± 0.66	96.40 ± 0.82	86.52 ± 0.63	85.50 ± 0.31	83.60 ± 0.51		
CutMix [24]	97.77 ± 0.16	97.32 ± 0.20	96.15 ± 0.59	85.31 ± 0.26	84.58 ± 0.63	82.50 ± 0.53		
SAM [7]	97.84 ± 0.27	97.17 ± 0.38	96.16 ± 0.55	86.28 ± 0.37	85.65 ± 0.40	83.66 ± 0.20		
Ours	97.80 ± 0.54	97.35 ± 0.38	$\textbf{96.58} \pm \textbf{0.48}$	87.68 ± 0.48	86.22 ± 0.57	$\textbf{84.92} \pm \textbf{0.70}$		

Robustness against noisy labels (w/ SWAD)

Ablation study (w/ SWAD)