

BMVC A Unified Mixture-View Framework for Unsupervised Representation Learning

Xiangxiang Chu¹ Xiaohang Zhan ² Bo Zhang¹

¹Meituan ²The Chinese University of Hong Kong

Summary

We propose an effective approach called Beyond Single Instance Multi-view (BSIM). Specifically, we impose more accurate instance discrimination capability by measuring the joint similarity between two randomly sampled instances and their mixture, namely spurious-positive pairs.

$$x_{i} \xrightarrow{t} \sim T$$

$$x_{j} \xrightarrow{t'} \sim T$$
Encoder — Contrastive Loss
$$x_{i} \xrightarrow{t} \sim T', T''$$

$$x_{i} \xrightarrow{t'} \sim T', T''$$
BSIM Mix — Encoder — BSIM Contrastive Loss

Figure 1. Our generic BSIM framework (b) serves as a plug-and-play adds-on for current contrastive learning paradigm (a). Note \mathcal{T} and \mathcal{T}' are augmentation policy distributions.

We apply it as an orthogonal improvement for unsupervised contrastive representation learning, including current outstanding methods SimCLR [2], MoCo [7], BYOL [6] and SimSiam [4]. We evaluate our learned representations on many downstream benchmarks like linear classification on ImageNet-1k and PASCAL VOC 2007, object detection on MS COCO 2017 and VOC, etc. We obtain substantial gains with a large margin almost on all these tasks compared with prior arts.

Figure 2. A schematic view of three self-supervised paradigms.

Related Work

- SimCLR [2] produces positive and negative pairs within a mini-batch of training data and chooses InfoNCE [8] loss to train the feature extraction backbone. It requires a large batch-size to effectively balance the positive and negative ones.
- MoCo [7] makes use of a feature queue to store negative samples, which greatly reduces high memory cost in [2]. Moreover, it proposes a momentum network to boost the consistency of features.
- BYOL [6] challenges the indispensability of negative examples and achieves impressive performance by only using positive ones. A mean square error loss is applied to make sure that positive pairs can predict each other.
- SimSiam [4] utilizes stop-gradient as an alternative method to avoid mode collapse, simplifying the design compared to prior arts.

Method

SimCLR-BSIM. SimCLR uses a single augmentation distribution, i.e. \mathcal{T}' and \mathcal{T}'' are identical herein. The encoder network f encodes $x'_{1,2}$ as $f(x'_{1,2})$. Note $x'_{1,2}$ should show similarities with x_1'' as well as x_2'' , which is measured by the sim function in the projected z space. We follow the definition in [2] for the similarity function as $\sin(z_i, z_j) = z_i^\top z_j / (\|z_i\| \|z_j\|)$. We use λ to regularize these similarities and the matching loss can be formulated as,

$$\ell'_{i}(\lambda) = -\lambda \log \frac{e^{\sin(z'_{i,j}, z''_{i})/\tau}}{\sum_{k=1}^{N} [e^{\sin(z'_{i,j}, z''_{k})/\tau} + \cdot e^{\sin(z'_{i,j}, z'_{i,k})/\tau}]} - (1-\lambda) \log \frac{e^{\sin(z'_{i,j}, z''_{k})/\tau}}{\sum_{k=1}^{N} [e^{\sin(z'_{i,j}, z''_{k})/\tau} + \cdot e^{\sin(z'_{i,j}, z'_{i,k})/\tau}]} \cdot (1)$$
where
$$= \begin{cases} 1 & k \notin \{i, j\} \\ 0 & \text{otherwise} \end{cases}$$

Similarly, we can formulate ℓ_i'' if we use $x_{1,2}''$ as the anchor. Hence, the NT-Xent [2] loss is defined by the summation of each individual loss within the mini-batch data of size N as,

$$L_{\text{NT-Xent}}(\lambda) = \frac{1}{2N} \sum_{k=1}^{N} \ell'_{i}(\lambda) + \ell''_{i}(\lambda), \lambda \sim \beta(\alpha, \alpha). \tag{2}$$

SimCLR [2] has 2N positive pairs and 2N(N-1) negative ones in total at each iteration. Whereas, our method includes 4N spurious-positive pairs, i.e., $(x'_{i,j}, x''_i)$, $(x'_{i,j}, x''_j)$, $(x''_{i,j}, x'_i)$, $(x''_{i,j}, x'_i)$, and 2N(N-2) negative ones.

MoCo-BSIM. We produce the query q of MoCo by forwarding the mixed image controlled by λ .

$$\mathcal{L}_{q} = -\lambda \log \frac{\exp(q \cdot k_{+}^{\lambda}/\tau)}{\sum_{i=1}^{N} \exp(q \cdot k_{i}/\tau)} - (1 - \lambda) \log \frac{\exp(q \cdot k_{+}^{1-\lambda}/\tau)}{\sum_{i=1}^{N} \exp(q \cdot k_{i}/\tau)}$$
(3)

where k_+^{λ} and $k_+^{1-\lambda}$ represent the corresponding key of images that produced the mixture respectively, and k_i are the keys in the current queue. τ is the softmax temperature.

BYOL-BSIM. BYOL-BSIM generates two s $x_1't'(x_1)$ and $x_1''t''(x_1)$ from x_1 by applying respectively s $t' \sim \mathcal{T}'$ and $t'' \sim \mathcal{T}''$. Following the same procedure, we produce x_2' and x_2'' . Then we produce a new image $x'_{1,2}$ by λ -based mixture x'_1 and x'_2 through cutmix. The online network outputs $y'_{f}(x'_{1,2})$ and the projection $z'_{q}(y')$. The target network yields two ℓ_2 -normalized projections $\bar{z}''_{1,2}$ \bar{z}_2''' from x_1'' and x_2'' .

We sum up the MSE loss between the projection of the mixed image and its parents by the mixture coefficient λ . Formally, the loss is:

$$\mathcal{L}'_{,} = -2\left[\lambda \frac{\langle q'_{(}z'_{)}, z''_{i,} \rangle}{\|q'_{(}z'_{)}\|_{2} \cdot \|z''_{i,}\|_{2}} + (1 - \lambda) \frac{\langle q'_{(}z'_{)}, z''_{j,} \rangle}{\|q'_{(}z'_{)}\|_{2} \cdot \|z''_{j,}\|_{2}}\right] \tag{2}$$

Note z_i'' and z_i'' mean the projection of the representation of x_i'' and x_i'' generated by the target network.

Experimental Results

Method	Epoch	SVM	SVM Low-Shot (%mAP)							
		%mAP	1	2	4	8	16	32	64	96
Supervised	_	87.2	53.0	63.6	73.7	78.8	81.8	83.8	85.2	86.0
SimCLR [2]	200	79.0	32.5	40.8	50.4	-59.1	65.5	70.1	73.6	75.4
SimCLR-BSIM	200	80.0	33.9	44.7	50.9	60.5	67.8	72.0	75.4	77.2
MoCo [7]	200	79.2	30.0	37.7	47.6	58.8	366.0	70.6	74.6	76.1
MoCoV2 [3]	200	83.8	43.7	55.2	63.2	71.5	575.4	79.1	81.2	82.0
MoCoV2-BSIM	200	84.8	50.0	53.9	65.3	72.4	176.3	79.3	81.7	82.8
MoCoV2-WBSIM	200	85.4	46.5	56.9	64.6	74.7	7 78.2	80.6	82.8	83.7
BYOL [6]	200	85.1	44.5	52.1	62.9	70.9	76.2	79.5	81.9	83.1
BYOL-BSIM	200	86.5	42.6	55.9	64.6	72.7	78.8	81.9	83.6	84.6
BYOL300 [6]	300	86.6	42.5	56.1	64.7	73.0	77.7	82.2	83.7	84.7
BYOL-BSIM300	300	87.6	45.7	54.5	66.4	-75.0	79.8	83.2	85.2	86.0
BYOL-WBSIM300	300	87.7	44.1	60.7	68.1	76.0	81.0	83.6	85.2	86.3
SwAV [1]*	400	85.4	-	-	-	-	-	-	-	-

Table 1. ResNet-50 linear SVMs mAP on VOC07 [5] classification using two 224 x 224 views. BYOL variants with "300" are trained for 300 epochs as [6]. *: SwAV is trained for 400 epochs.

Method	Epoch	Backbone							Top-1 Accuracy
InfoMin Aug [9]	200	R50	-	-	-	-	70.1	-	70.1
MoCo [7]	200	R50	15.3	33.1	44.7	57.3	60.6	61.0	61.0
SimCLR[2]	200	R50	17.1	31.4	41.4	54.4	61.6	60.1	61.6
SimCLR-BSIM	200	R50	18.0	32.5	42.7	55.3	62.3 (+0.7↑)	60.7	62.3 (+0.7↑)
MoCoV2 [3]	200	R50	14.7	32.8	45.0	61.6	66.7	67.5	67.5
MoCoV2-BSIM	200	R50	15.7	34.2	46.8	63.1	67.6	68.0 (+0.5↑)	68.0 (+0.5↑)
MoCoV2-WBSIM	200	R50	16.0	35.0	48.1	64.7	68.2	68.4 (+0.9↑)	68.4 (+0.9↑)
BYOL [6]	200	R50	16.7	34.2	46.6	60.8	69.1	67.1	69.1
BYOL-BSIM	200	R50	17.5	35.1	47.4	62.0	69.8 (+0.7↑)	67.9	69.8 (+0.7↑)
BYOL [6] [†]	300	R50	14.1	34.4	47.2	63.1	72.3	70.3	72.3
BYOL-BSIM	300	R50	16.4	35.3	48.5	65.1	72.7 (+0.4↑)	70.7	72.7 (+0.4↑)
BYOL-WBSIM	300	R50	15.4	35.3	48.7	65.7	73.0 (+0.7↑)	71.1	73.0 (+0.7↑)
SimSiam [4]	200	R50	-	-	-	-	70.0	-	70.0
SimSiam-BSIM [4]	200	R50	-	-	-	-	70.4(+0.4↑)	-	70.4(+0.4↑)
SimSiam-WBSIM [4]	200	R50	-	_	_	_	70.8(+0.8↑)	-	70.8(+0.8↑)
SwAV [1]	200	R50	-	_	_	-	69.1	-	69.1
SwAV [1]	400	R50	-	-	-	-	70.7	-	70.7

Table 2. Linear classification on ImageNet (top-1 center-crop accuracy on the validation set). All models are trained with two 224×224 views. †: reproduced. SwAV result is from SimSiam [4].

References

- [1] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural Information Processing Systems, 33, 2020.
- [2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.
- [3] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.
- [4] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.
- In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.
- [5] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303-338, 2010.
- [6] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733, 2020.
- [7] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.
- [8] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.
- [9] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What makes for good views for contrastive learning. arXiv preprint arXiv:2005.10243, 2020.