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Summary

We propose an effective approach called Beyond Single Instance Multi-view (BSIM). Specifically,

we impose more accurate instance discrimination capability by measuring the joint similarity be-

tween two randomly sampled instances and their mixture, namely spurious-positive pairs.
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Figure 1. Our generic BSIM framework (b) serves as a plug-and-play adds-on for current contrastive learning

paradigm (a). Note T and T ′ are augmentation policy distributions.

We apply it as an orthogonal improvement for unsupervised contrastive representation learning,

including current outstanding methods SimCLR [2], MoCo [7], BYOL [6] and SimSiam [4]. We

evaluate our learned representations on many downstream benchmarks like linear classification

on ImageNet-1k and PASCAL VOC 2007, object detection on MS COCO 2017 and VOC, etc.

We obtain substantial gains with a large margin almost on all these tasks compared with prior

arts.
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Figure 2. A schematic view of three self-supervised paradigms.

RelatedWork

SimCLR [2] produces positive and negative pairs within a mini-batch of training data and

chooses InfoNCE [8] loss to train the feature extraction backbone. It requires a large

batch-size to effectively balance the positive and negative ones.

MoCo [7] makes use of a feature queue to store negative samples, which greatly reduces

high memory cost in [2]. Moreover, it proposes a momentum network to boost the

consistency of features.

BYOL [6] challenges the indispensability of negative examples and achieves impressive

performance by only using positive ones. A mean square error loss is applied to make sure

that positive pairs can predict each other.

SimSiam [4] utilizes stop-gradient as an alternative method to avoid mode collapse,

simplifying the design compared to prior arts.

Method

SimCLR-BSIM. SimCLR uses a single augmentation distribution, i.e. T ′ and T ′′ are identical

herein. The encoder network f encodes x′
1,2 as f (x′

1,2). Note x′
1,2 should show similarities with

x′′
1 as well as x′′

2 , which is measured by the sim function in the projected z space. We follow the

definition in [2] for the similarity function as sim(zi, zj) = z>
i zj/(‖zi‖‖zj‖). We use λ to regularize

these similarities and the matching loss can be formulated as,
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where =

{
1 k 6∈ {i, j}
0 otherwise

(1)

Similarly, we can formulate `′′
i if we use x′′

1,2 as the anchor. Hence, the NT-Xent [2] loss is defined
by the summation of each individual loss within the mini-batch data of size N as,

LNT-Xent(λ) = 1
2N

N∑
k=1

`′
i(λ) + `′′

i (λ), λ ∼ β(α, α). (2)

SimCLR [2] has 2N positive pairs and 2N(N −1) negative ones in total at each iteration. Whereas,

our method includes 4N spurious-positive pairs, i.e., (x′
i,j, x′′

i ), (x′
i,j, x′′

j ), (x′′
i,j, x′

i), (x′′
i,j, x′

j), and
2N(N − 2) negative ones.
MoCo-BSIM.We produce the query q of MoCo by forwarding the mixed image controlled by λ.

Lq = −λ log
exp(q · kλ

+/τ )∑N
i=1 exp(q · ki/τ )

− (1 − λ) log exp(q · k1−λ
+ /τ )∑N

i=1 exp(q · ki/τ )
(3)

where kλ
+ and k1−λ

+ represent the corresponding key of images that produced the mixture re-

spectively, and ki are the keys in the current queue. τ is the softmax temperature.

BYOL-BSIM. BYOL-BSIM generates two s x′
1t

′(x1) and x′′
1t′′(x1) from x1 by applying respectively

s t′ ∼ T ′ and t′′ ∼ T ′′. Following the same procedure, we produce x′
2 and x′′

2 . Then we produce
a new image x′

1,2 by λ-based mixture x′
1 and x′

2 through cutmix. The online network outputs

y′
f (x

′
1,2) and the projection z′

g(y
′). The target network yields two `2-normalized projections z̄′′

1 ,
z̄′′
2 from x′′

1 and x′′
2 .

We sum up the MSE loss between the projection of the mixed image and its parents by the

mixture coefficient λ. Formally, the loss is:
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Note z′′
i, and z′′

j, mean the projection of the representation of x′′
i and x′′

j generated by the target

network.

Experimental Results

Method
Epoch SVM SVM Low-Shot (%mAP)

%mAP 1 2 4 8 16 32 64 96

Supervised - 87.2 53.063.673.778.881.883.885.286.0

SimCLR [2] 200 79.0 32.540.850.459.165.570.173.675.4

SimCLR-BSIM 200 80.0 33.944.750.960.567.872.075.477.2

MoCo [7] 200 79.2 30.037.747.658.866.070.674.676.1

MoCoV2 [3] 200 83.8 43.755.263.271.575.479.181.282.0

MoCoV2-BSIM 200 84.8 50.053.965.372.476.379.381.782.8

MoCoV2-WBSIM 200 85.4 46.556.964.674.778.280.682.883.7

BYOL [6] 200 85.1 44.552.162.970.976.279.581.983.1

BYOL-BSIM 200 86.5 42.655.964.672.778.881.983.684.6

BYOL300 [6] 300 86.6 42.556.164.773.077.782.283.784.7

BYOL-BSIM300 300 87.6 45.754.566.475.079.883.285.286.0

BYOL-WBSIM300 300 87.7 44.160.768.176.081.083.685.286.3

SwAV [1]? 400 85.4 - - - - - - - -

Table 1. ResNet-50 linear SVMs mAP on VOC07 [5] classification using two 224× 224 views. BYOL variants with

“300” are trained for 300 epochs as [6]. ?: SwAV is trained for 400 epochs.

Method Epoch Backbone Top-1 Accuracy

InfoMin Aug [9] 200 R50 - - - - 70.1 - 70.1

MoCo [7] 200 R50 15.3 33.1 44.7 57.3 60.6 61.0 61.0

SimCLR[2] 200 R50 17.1 31.4 41.4 54.4 61.6 60.1 61.6

SimCLR-BSIM 200 R50 18.0 32.5 42.7 55.3 62.3 (+0.7↑) 60.7 62.3 (+0.7↑)
MoCoV2 [3] 200 R50 14.7 32.8 45.0 61.6 66.7 67.5 67.5

MoCoV2-BSIM 200 R50 15.7 34.2 46.8 63.1 67.6 68.0 (+0.5↑) 68.0 (+0.5↑)
MoCoV2-WBSIM 200 R50 16.0 35.0 48.1 64.7 68.2 68.4 (+0.9↑) 68.4 (+0.9↑)
BYOL [6] 200 R50 16.7 34.2 46.6 60.8 69.1 67.1 69.1

BYOL-BSIM 200 R50 17.5 35.1 47.4 62.0 69.8 (+0.7↑) 67.9 69.8 (+0.7↑)
BYOL [6]† 300 R50 14.1 34.4 47.2 63.1 72.3 70.3 72.3

BYOL-BSIM 300 R50 16.4 35.3 48.5 65.1 72.7 (+0.4↑) 70.7 72.7 (+0.4↑)
BYOL-WBSIM 300 R50 15.4 35.3 48.7 65.7 73.0 (+0.7↑) 71.1 73.0 (+0.7↑)
SimSiam [4] 200 R50 - - - - 70.0 - 70.0

SimSiam-BSIM [4] 200 R50 - - - - 70.4(+0.4↑) - 70.4(+0.4↑)
SimSiam-WBSIM [4] 200 R50 - - - - 70.8(+0.8↑) - 70.8(+0.8↑)
SwAV [1] 200 R50 - - - - 69.1 - 69.1

SwAV [1] 400 R50 - - - - 70.7 - 70.7

Table 2. Linear classification on ImageNet (top-1 center-crop accuracy on the validation set). All models are trained

with two 224×224 views. †: reproduced. SwAV result is from SimSiam [4].
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