
CHU ET AL.: BSIM 1

Supplementary of “A Unified Mixture-View
Framework for Unsupervised
Representation Learning"

Xiangxiang Chu1

chuxiangxiang@meituan.com

Xiaohang Zhan2

xiaohangzhan@outlook.com

Bo Zhang1

zhangbo97@meituan.com

1 Meituan
Beijing, China

2 The Chinese University of Hong Kong
HongKong, China

1 Index of Symbols
To facilitate readability, we give a complete list of notations in Table 1.

Symbol Definition
xi, x j input sample
x′i, x′′i augmented sample (view)
T ′, T ′′ augmentation distribution
h′i, h′′i feature representation
z′i, z′′i representation mapped to z-space

β (α,α) beta distribution
λ sampled variable from β

τ softmax temperature
q query in the MoCo framework

kλ
+,k

1−λ
+ key of the mixed samples

ki key in the current queue
f (·), fθ encoder network
g(·), gθ projection head

qθ predictor
`′i contrastive loss with xi, j as an anchor

LNT−Xent(λ) loss of SimCLR-BSIM
Lq loss of MoCo-BSIM
L′

θ ,ξ loss of BYOL-BSIM
LWBSIM loss of weighted BSIM

Table 1: List of symbols used throughout the paper.

c© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 CHU ET AL.: BSIM

2 BSIM as a General Adds-on Approach
Apart from the discussed integration with SimCLR, MoCo and BYOL, we can also sim-

ply treat BSIM as an adds-on to SIM-based methods by a weighted summation of loss func-
tions,

LWBSIM = w1 ∗LBSIM +w2 ∗LSIM, (1)

where w1,w2 ∈ (0,1). We refer this approach as weighted-BSIM (WBSIM). When w1 =
0,w2 = 1, it is the conventional single instance multi-view approach. When w1 = 1,w2 = 0,
it is BSIM. We set w1 = w2 = 0.5 throughout the paper to benefit from both SIM and BSIM.

Feature-level mixture is utilized as a regularization to perform hard example mining [14],
which can boost discrimination. Other than using it as an extra augmentation, we focus on
image-level mixture to define the spurious-positive examples and quantify how close two
images are.

3 Experiment Details

3.1 Self-supervised Pre-training

In self-supervised pre-training, we generally follow the default settings of the compet-
ing methods for fair comparisons. We freeze the weights of ResNet50. Unless otherwise
specified, all methods are trained for 200 epochs on the ImageNet dataset.

SimCLR-BSIM. We use the same set of data augmentations as [3], i.e., random cropping,
resizing, flipping, color distortions, and Gaussian blur. The projection head is a 2-layer MLP
that projects features into 128-dimensional latent space. We use the modified NT-Xent loss as
in Equation 2 and optimize with LARS [22] with the weight decay 1e-6 and the momentum
0.9. We reduce the batch size to 256, and learning rate to 0.3 with linear warmup for first 10
epochs and a cosine decay schedule without restart.

MoCo-BSIM. We follow [12] for MoCo experiments. We first train ResNet-50 with an
initial learning rate 0.03 for 200 epochs on ImageNet (about 53 hours on 8 GPUs) with a
batch size of 256 using SGD with weight decay 1e-4 and momentum 0.9. For downstream
tasks, the model is finetuned with BNs enabled and synchronized across GPUs. For Mo-
CoV1, we utilize a linear neck with 128 output channels and a τ of 0.07. As for MoCoV2,
we use two FC layers (2048, 2048, 128) to perform projections and a temperature coefficient
of 0.2.

BYOL-BSIM. Data augmentation is the same as [10]. We follow [10] for the default
hyper-parameters. Note that [10] states they prefer 300 epochs to make comparisons, we also
conform to it to be consistent. Since many methods report their performance on 200 epochs,
we also add an extra setting of 200 epochs to make fair comparison. To differentiate these
two versions, we use 200 by default and name the BYOL300 for the former. Specifically, we
also optimize LARS [22] with weight decay 1.5 ·106. We set the initial learning rate 3.2 and
use a batch size of 4096. The target network has an exponential moving average parameter
τ = 0.996 and increased to 1.

Citation
Citation
{Kalantidis, Sariyildiz, Pion, Weinzaepfel, and Larlus} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{You, Gitman, and Ginsburg} 2017

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x penalty @M {}al.} 2020

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x penalty @M {}al.} 2020

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x penalty @M {}al.} 2020

Citation
Citation
{You, Gitman, and Ginsburg} 2017

CHU ET AL.: BSIM 3

SimSiam-BSIM. We use the same setting as [4], which is similar to [12]. Note that the
weight decay of 0.0001 is applied for all parameter layers, including batch normalization
and bias.

3.2 Downstream classification

Linear classification on ImageNet for BYOL. BYOL [10] adopts a quite different setting.
To reproduce the baseline results, we train it for 90 epochs using the SGD optimizer with
0.9 momentum. Besides, we use L2 regularization with 0.0001 and a batch size of 256. The
initial learning rate is 0.01 and scheduled by the 0.1 × at epoch 30 and 60.

Linear SVM classification on VOC2007. Following [9, 17, 26], we use the res4 block
(notation from [8]) of ResNet-50 as the fixed feature representations and train SVMs [1]
for classification using LIBLINEAR package [7]. We train on the trainval split of the
VOC2007 dataset [6] and report the mean Average Precision (mAP) on the test split by 3
independent experiments. All methods are evaluated using the same hyper-parameters as in
[9].

Linear classification on ImageNet. We follow the linear classification protocol in [12]
where a linear classifier is appended to frozen features for supervised training. As for MoCo,
we train 100 epochs using SGD with a batch size of 256. The learning rate is initialized as
30 and scheduled by 0.1 × at epoch 30 and 60.

Low-shot classification on VOC2007. We evaluate the low-shot performance when each
category contains much fewer images. Following [9, 20, 26], we use seven settings (N=1, 2,
4, 8, 16, 32, 64 and 96 positive samples), train linear SVMs on the low-shot splits, and report
the test results across 3 independent experiments.

Evaluation on Semi-supervised Classification For semi-supervised training, we use the
same split 1% and 10% amount of labeled ImageNet images as done in [3, 24]. We follow
[3, 13, 15, 25] to finetune ResNet50’s backbone on the labeled data. We train 20 epochs using
SGD optimizer (0.9 momentum) with a batch size of 256. The learning rate is initialized as
0.01 and decayed by 0.2× at epoch 12 and 16.

3.3 Object Detection and Instance Segmentation

Evaluation on PASCAL VOC Object Detection Following the evaluation protocol by
[12] where ResNet50-C4 (i.e., using extracted features of the 4-th stage) is used as the back-
bone and Faster-RCNN [18] as the detector, we benchmark our method for the object de-
tection task on the VOC07 [6] test set. All models are finetuned on the trainval of
VOC07+12 dataset for 24k iterations. We use Detectron2 [21] like MoCo did. Results are
reported in Table 2, which are mean scores across five trials as [5] using the COCO suite
of metrics [16]. Combined with BSIM, BYOL achieves 1.4% higher AP and 0.8% higher
AP50.

Citation
Citation
{Chen and He} 2021

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x penalty @M {}al.} 2020

Citation
Citation
{Goyal, Mahajan, Gupta, and Misra} 2019

Citation
Citation
{Owens, Wu, McDermott, Freeman, and Torralba} 2016

Citation
Citation
{Zhan, Xie, Liu, Ong, and Loy} 2020

Citation
Citation
{Girshick, Radosavovic, Gkioxari, Doll{á}r, and He} 2018

Citation
Citation
{Boser, Guyon, and Vapnik} 1992

Citation
Citation
{Fan, Chang, Hsieh, Wang, and Lin} 2008

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Goyal, Mahajan, Gupta, and Misra} 2019

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Goyal, Mahajan, Gupta, and Misra} 2019

Citation
Citation
{Wang and Hebert} 2016

Citation
Citation
{Zhan, Xie, Liu, Ong, and Loy} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{Zhai, Oliver, Kolesnikov, and Beyer} 2019{}

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{H{é}naff, Srinivas, Deprotect unhbox voidb@x penalty @M {}Fauw, Razavi, Doersch, Eslami, and Oord} 2019

Citation
Citation
{Kornblith, Shlens, and Le} 2019

Citation
Citation
{Zhai, Puigcerver, Kolesnikov, Ruyssen, Riquelme, Lucic, Djolonga, Pinto, Neumann, Dosovitskiy, etprotect unhbox voidb@x penalty @M {}al.} 2019{}

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Wu, Kirillov, Massa, Lo, and Girshick} 2019

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

4 CHU ET AL.: BSIM

Method Epoch AP50 AP75 AP

supervised - 81.3 58.8 53.5
SimCLR (2020) 200 79.4 55.6 51.5
SimCLR-BSIM 200 79.8 56.0 51.8
SimCLR-WBSIM 200 80.0 56.2 51.9
MoCo (2020) 200 81.5 62.6 55.9
MoCoV2 (2020) 200 82.4 63.6 57.0
MoCoV2 (2020) 200 82.5 64.0 57.4
MoCoV2-BSIM 200 82.7 64.0 57.3
MoCoV2-WBSIM 200 83.0 64.2 57.5
SimSiam, base (2021) 200 82.0 62.8 56.4
SimSiam, optimal (2021) 200 82.4 63.7 57.0
SimSiam-BSIM 200 82.8 64.0 57.3
SimSiam-WBSIM 200 83.0 64.2 57.4
BYOL (2020) 200 81.0 56.5 51.9
BYOL-BSIM 200 81.8 58.4 53.3
BYOL-WBSIM 200 82.0 58.5 53.5
SwAV (2020) 800 82.6 62.7 56.1

Table 2: Detection results on PASCAL VOC trainval07+12, which are reported across 5 trials.
To make fair comparisons, the backbone is pre-trained for 200 epochs. MoCoV2-WBSIM trained 200
epochs surpasses MoCoV2 and SwAV trained for 800 epochs.

Method Epoch APb
50 APb

75 APb APm
50 APm

75 APm

Supervised - 59.9 43.1 40.0 56.5 36.9 34.7
SimCLR (2020) 200 59.1 42.9 39.6 55.9 37.1 34.6
SimCLR-BSIM 200 59.3 43.1 39.8 56.2 37.4 34.8
SimCLR-WBSIM 200 59.5 43.2 40.0 56.4 37.5 34.9
MoCo (2020) 200 60.5 44.1 40.7 57.3 37.6 35.4
MoCoV2 (2020) 200 60.1 44.0 40.6 56.9 38.0 35.3
MoCoV2-BSIM 200 60.3 44.2 40.9 57.0 38.2 35.4
MoCoV2-WBSIM 200 60.4 44.4 41.1 57.2 38.3 35.5
BYOL (2020) 200 60.5 43.9 40.3 56.8 37.3 35.1
BYOL-BSIM 200 60.8 44.2 40.7 57.0 37.5 35.3
BYOL-WBSIM 200 61.0 44.3 40.9 57.2 37.6 35.5
SwAV (2020) 800 59.8 42.0 39.1 56.2 36.1 34.2

Table 3: Object detection and instance segmentation fine-tuned results on COCO2017 dataset using
2× schedule.

Evaluation on COCO Objection Detection and Instance Segmentation We also follow
the evaluation protocol by [12] for the object detection and instance segmentation task on
COCO2017 [16]. Specifically, we use the ResNet50-C4 Mask R-CNN framework [11] and
follow 2× schedule [8] as [12] since this setting can make fairer evaluations. All models are
fine-tuned on the train2017 set and evaluated on val2017. We report the bounding box
AP and mask AP on COCO in Table 3.

3.4 Training and Memory Cost

All the experiments are done on Tesla V100 with 8 GPUs. We use a batch size of 2048
for the BYOL experiment and accumulate gradients to simulate a batch size of 4096. MoCo-
BSIM adds no extra memory cost to MoCo where we simply replace query samples with
mixed ones. Whereas the WBSIM version has to maintain the originally augmented query
samples to compute MoCo’s default loss. See details in Table 5.

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

Citation
Citation
{Chen and He} 2021

Citation
Citation
{Chen and He} 2021

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x penalty @M {}al.} 2020

Citation
Citation
{Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020{}

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

Citation
Citation
{Grill, Strub, Altch{é}, Tallec, Richemond, Buchatskaya, Doersch, Pires, Guo, Azar, etprotect unhbox voidb@x penalty @M {}al.} 2020

Citation
Citation
{Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin} 2020

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{He, Gkioxari, Doll{á}r, and Girshick} 2017

Citation
Citation
{Girshick, Radosavovic, Gkioxari, Doll{á}r, and He} 2018

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

CHU ET AL.: BSIM 5

MoCo MoCo-BSIM MoCo-WBSIM
Memory(G) 5.5 5.5 8.2
Cost (Hour) 53 53 65

Table 4: Memory cost and training cost tested using a batch size of 256 across 8 GPUS. The training
cost is calculated based on 200 epochs.

Method Batch Size Memory (G) GPU Days
MoCo 256 44 17.7
MoCo-BSIM 256 44 17.7
MoCo-WBSIM 256 65.6 21.7
BYOL 4096 216 16
BYOL-BSIM 4096 216 16
BYOL-WBSIM 1024 200 28
SwAV 4096 819 33.3

Table 5: GPU resources cost. SwAV is tested on 64 V100-16G GPUs, others on 8 V100-32G GPUs.
The training cost is calculated based on 200 epochs.

The sampling process. For a mini-batch of samples with size N, theoretically, we can
sample λ for N times to enrich the information. Consequently, we can construct the loss
by using N different weighted items. However, this process can hardly be implemented
efficiently in the PyTorch framework. Instead, we make use of the 8 GPU workers and set
different seeds at the beginning of training. This approach is quite efficient and possesses
rich mixtures.

We also compare the performance of various methods given longer training epochs. The
results are listed in Table 6. Compared with MoCoV2, MocoV2-WBSIM can further im-
prove 0.3% top-1 accuracy on ImageNet validation dateset. Moreover, it can boost about 1
AP on VOC detection task.

Method Epoch ImageNet Acc VOC Detection
Top-1 Top-5 AP50 AP75 AP

MoCoV2 (2020) 800 71.1 - 82.5 64.0 57.4
MoCoV2-WBSIM 800 71.4 90.4 83.4 65.0 58.3

Table 6: Linear evaluation on ImageNet and object detection on VOC using ResNet50.

4 More Discussions
Comparison with mixture-based approaches. Shen et al. [19] propose a somewhat com-
plicated iterative mixture strategy exploiting Mixup [27] and CutMix [23] to generate a
weighted mixture of samples. The mixture can be considered a weakened version of the
original images which is harder to recognize, hence rendering flattened predictions. As sug-
gested from the label-smoothing perspective, it is meant to suppress incorrect response on
hard negative samples. However, image mixtures are used as-is, i.e., it learns the mixture-to-
mixture similarity when combined with MoCo [12], while we learn the similarity between
the mixture and its parents (forming spurious-positive pairs). This poses a fundamental dif-
ference as the loss has to be redesigned accordingly. Notice [19] also designs a too complex
approach to strive for semantical harmony by decaying the ‘context’ image while not neces-
sary in our case.

Citation
Citation
{Chen, Fan, Girshick, and He} 2020{}

Citation
Citation
{Shen, Liu, Liu, Savvides, and Darrell} 2020

Citation
Citation
{Zhang, Cisse, Dauphin, and Lopez-Paz} 2018

Citation
Citation
{Yun, Han, Oh, Chun, Choe, and Yoo} 2019

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Shen, Liu, Liu, Savvides, and Darrell} 2020

6 CHU ET AL.: BSIM

TSNE Visualization to showcase the working mechanism of BSIM We extend the dis-
cussions about the working mechanism of BSIM. As mentioned Sec 5 (main text), BSIM’s
latent space is less crowded to facilitate discrimination. To better illustrate this benefit, we
pick 32 images and construct their mixtures and map their latent representations via TSNE,
see Figure 2. It turns out that BSIM works like a ruler that measures how far a mixed in-
stance should be from its parents. For instance, 6_25 (Figure 1) is distant from both 6 and
25 in SIM, while it is closer to 6 in BSIM. It is also evident that the latent space is evenly
spaced in BSIM than SIM. Recall that TSNE is a dimension reducing tool, whose visualized
distance is a relative measure in the latent space, not necessarily proportional to its crop size.
Hence 6_25 shall not be accurately centered in between 6 and 25 although only each half of
6 and 25 are used for the mixture. For SIM, 25_6 is close to 25 but 6_25 is far from both. For
BSIM, 6_25 is close to 6, but so is 25_6 to 25. This subtle difference exactly manifests the
difference of the two. That is, we stretch out the latent space in terms of the relative distance
of every two instances to their spurious pairs, while SIM can not.

Nevertheless, it is easier for decision making when instances are well-organized other
than cluttered. The mixture near decision boundary can serve as a pivot for quantitively sep-
arating instances, which also helps scattering the representations evenly in the latent space.

Figure 1: CutMix mixture for image 6 and 25 of Fig. 2. SIM is more sensitive to large color change.

Figure 2: The representation of 2D embeddings using TSNE. We use 32 images and construct the
mixture using i-th and 31− i-th images. The mixed embedding is marked by i_31− i. Without BSIM,
the embedding cannot make good use of the space (i.e. more crowded). Left: SIM, Right: BSIM.
Notice SIM pushes a simple mixture 6_25 (red) distant from others, leaving a narrow space and a large
amount of unused space. Besides, 12_19 and 19_12 (green) should be close but are pushed too far. In
contrast, in BSIM all instances are scattered quite evenly, while mixed instances are also better placed
near its parents.

CHU ET AL.: BSIM 7

5 List of Additional Figures
Figure 3 demonstrates that BSIM has better intra-class discrimination that SIM.
Figure 4 shows the difference of mixed images between Mixup and CutMix, where the

latter is perceptually more natural.
Figure 5 illustrates a schematic view of latent sphere where the mixed representation is

normalized on the surface.
Figure 6 manifests the schematics of of SimCLR-BSIM.
Figure 8 gives the second implementation of BYOL-BSIM.
Figure 9 depicts the beta distribution given different α , where we choose α to have a

uniform distribution.

Figure 3: The representation of 2D embeddings using TSNE (sampled 3 times). We draw 10 instances
(denoted by number) from each class and make 5 times of data augmentation per instance. The same
class are denoted by the same color. BSIM has a better inter-class discrimination than SIM, where
instances of the same class are mostly distant from those of other classes.

λ = 0.10 λ = 0.30 λ = 0.50 λ = 0.70 λ = 0.90

λ = 0.10 λ = 0.30 λ = 0.50 λ = 0.70 λ = 0.90

Figure 4: Comparison of Mixup and CutMix with λ as the interpolation ratio for Mixup, and cutout
ratio for CutMix

8 CHU ET AL.: BSIM

z̄i′′

z̄j′′
z̄i,j′′

zi,j′′

λ 1-λ

Figure 5: Schematic view of the unit ball in high-dimensional space. The target embedding of the
mixed image is z̄′′i, j, which is formed by normalizing z′′i, j (dashed in green) to the sphere of the unit ball.
z′′i, j is obtained by the λ controlled linear interpolation between z′′i and z′′j .

←Representation→ ←Representation→

xxxi xxx j

xxx′′i xxx′′jxxx′i, j

hhh′′i hhh′i, j

zzz′′i zzz′i, j

hhh′′j

zzz′′j

t ′′ ∼ T ′′ λ , t ′ 1−λ , t ′ t ′′ ∼ T ′′

f (·)

g(·)

f (·)

g(·)

f (·)

g(·)

sim sim

Figure 6: Adapting BSIM into SimCLR for contrastive learning. Given two images xi and x j (we use
j = N− i for speed-up within a batch of N samples), we generate a spurious-positive sample by mixing
separately augmented features (t ′ ∼ T ′) into x′i, j , which pairs with x′′i and x′′j . SimCLR is a special case
of SimCLR-BSIM when λ is 0 or 1. Note f (·) is an encoder network and g(·) refers to a projection
head, both are trained with the contrastive loss in Equation 1. The representation hhh is later used for
downstream tasks.

Encoder
Momentum

Encoder

q k0, k1, k2, …

…

(q · k+λ, q · k+1-λ, q · ki)
gradient

xq xk

Lq

queue

k+

Figure 7: Applying BSIM to MoCo. Given a batch of images, we mix them in a pair-wise manner to
produce xq (only one mixture is shown for simplicity). We encode the mixed images as query q and the
whole current batch as keys k. We thus generate spurious-positive pairs from q and k, and the current
queue is used as negative samples.

CHU ET AL.: BSIM 9

xxxi

xxx j

xxx′i

xxx′j

xxx′i, j yyy′
θ

zzz′
θ

qqqθ (z
′
θ
)

xxx′′i yyy′′i,ξ zzz′′i,ξ

xxx′′j yyy′′j,ξ zzz′′j,ξ

L′i,θ ,ξ

L′j,θ ,ξ

L′
θ ,ξ

t ′

t ′′

t ′
t ′′

λ

1−λ

fθ

fξ

fξ

gθ

gξ

gξ

qθ

λ

1−λ

Figure 8: Applying BSIM to BYOL as in Equation 4. The above blue region is the online network, the
below red one is the same target network.

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4 α = 0.25

α = 0.50

α = 0.75

α = 1.00

Figure 9: Probability density function of Beta distribution β (α,α) under different settings. Notice
when α = 1 we have a uniform distribution.

10 CHU ET AL.: BSIM

References
[1] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the fifth annual workshop on Compu-
tational learning theory, pages 144–152, 1992.

[2] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster assign-
ments. Advances in Neural Information Processing Systems, 33, 2020.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. arXiv preprint
arXiv:2002.05709, 2020.

[4] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2021.

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[6] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338, 2010.

[7] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Li-
blinear: A library for large linear classification. Journal of machine learning research,
9(Aug):1871–1874, 2008.

[8] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He.
Detectron. https://github.com/facebookresearch/detectron, 2018.

[9] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan Misra. Scaling and bench-
marking self-supervised visual representation learning. In ICCV, pages 6391–6400,
2019.

[10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mo-
hammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-
supervised learning. arXiv preprint arXiv:2006.07733, 2020.

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Pro-
ceedings of the IEEE international conference on computer vision, pages 2961–2969,
2017.

[12] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[13] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Es-
lami, and Aaron van den Oord. Data-efficient image recognition with contrastive pre-
dictive coding. International Conference on Machine Learning, 2019.

https://github.com/facebookresearch/detectron

CHU ET AL.: BSIM 11

[14] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane
Larlus. Hard negative mixing for contrastive learning. In Neural Information Process-
ing Systems (NeurIPS), 2020.

[15] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models trans-
fer better? In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2661–2671, 2019.

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[17] Andrew Owens, Jiajun Wu, Josh H McDermott, William T Freeman, and Antonio Tor-
ralba. Ambient sound provides supervision for visual learning. In European conference
on computer vision, pages 801–816. Springer, 2016.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[19] Zhiqiang Shen, Zechun Liu, Zhuang Liu, Marios Savvides, and Trevor Darrell. Re-
thinking image mixture for unsupervised visual representation learning. arXiv preprint
arXiv:2003.05438, 2020.

[20] Yu-Xiong Wang and Martial Hebert. Learning to learn: Model regression networks
for easy small sample learning. In European Conference on Computer Vision, pages
616–634. Springer, 2016.

[21] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. De-
tectron2. https://github.com/facebookresearch/detectron2, 2019.

[22] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet
training. arXiv preprint arXiv:1708.03888, 6, 2017.

[23] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with lo-
calizable features. In Proceedings of the IEEE International Conference on Computer
Vision, pages 6023–6032, 2019.

[24] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-
supervised semi-supervised learning. In Proceedings of the IEEE international con-
ference on computer vision, pages 1476–1485, 2019.

[25] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos
Riquelme, Mario Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann,
Alexey Dosovitskiy, et al. A large-scale study of representation learning with the visual
task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

[26] Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. On-
line deep clustering for unsupervised representation learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6688–
6697, 2020.

https://github.com/facebookresearch/detectron2

12 CHU ET AL.: BSIM

[27] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In International Conference on Learning Repre-
sentations, 2018.

