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1 Index of Symbols
To facilitate readability, we give a complete list of notations in Table 1.

Symbol Definition
xi, x j input sample
x′i, x′′i augmented sample (view)
T ′, T ′′ augmentation distribution
h′i, h′′i feature representation
z′i, z′′i representation mapped to z-space

β (α,α) beta distribution
λ sampled variable from β

τ softmax temperature
q query in the MoCo framework

kλ
+,k

1−λ
+ key of the mixed samples

ki key in the current queue
f (·), fθ encoder network
g(·), gθ projection head

qθ predictor
`′i contrastive loss with xi, j as an anchor

LNT−Xent(λ ) loss of SimCLR-BSIM
Lq loss of MoCo-BSIM
L′

θ ,ξ loss of BYOL-BSIM
LWBSIM loss of weighted BSIM

Table 1: List of symbols used throughout the paper.
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2 BSIM as a General Adds-on Approach
Apart from the discussed integration with SimCLR, MoCo and BYOL, we can also sim-

ply treat BSIM as an adds-on to SIM-based methods by a weighted summation of loss func-
tions,

LWBSIM = w1 ∗LBSIM +w2 ∗LSIM, (1)

where w1,w2 ∈ (0,1). We refer this approach as weighted-BSIM (WBSIM). When w1 =
0,w2 = 1, it is the conventional single instance multi-view approach. When w1 = 1,w2 = 0,
it is BSIM. We set w1 = w2 = 0.5 throughout the paper to benefit from both SIM and BSIM.

Feature-level mixture is utilized as a regularization to perform hard example mining [14],
which can boost discrimination. Other than using it as an extra augmentation, we focus on
image-level mixture to define the spurious-positive examples and quantify how close two
images are.

3 Experiment Details

3.1 Self-supervised Pre-training

In self-supervised pre-training, we generally follow the default settings of the compet-
ing methods for fair comparisons. We freeze the weights of ResNet50. Unless otherwise
specified, all methods are trained for 200 epochs on the ImageNet dataset.

SimCLR-BSIM. We use the same set of data augmentations as [3], i.e., random cropping,
resizing, flipping, color distortions, and Gaussian blur. The projection head is a 2-layer MLP
that projects features into 128-dimensional latent space. We use the modified NT-Xent loss as
in Equation 2 and optimize with LARS [22] with the weight decay 1e-6 and the momentum
0.9. We reduce the batch size to 256, and learning rate to 0.3 with linear warmup for first 10
epochs and a cosine decay schedule without restart.

MoCo-BSIM. We follow [12] for MoCo experiments. We first train ResNet-50 with an
initial learning rate 0.03 for 200 epochs on ImageNet (about 53 hours on 8 GPUs) with a
batch size of 256 using SGD with weight decay 1e-4 and momentum 0.9. For downstream
tasks, the model is finetuned with BNs enabled and synchronized across GPUs. For Mo-
CoV1, we utilize a linear neck with 128 output channels and a τ of 0.07. As for MoCoV2,
we use two FC layers (2048, 2048, 128) to perform projections and a temperature coefficient
of 0.2.

BYOL-BSIM. Data augmentation is the same as [10]. We follow [10] for the default
hyper-parameters. Note that [10] states they prefer 300 epochs to make comparisons, we also
conform to it to be consistent. Since many methods report their performance on 200 epochs,
we also add an extra setting of 200 epochs to make fair comparison. To differentiate these
two versions, we use 200 by default and name the BYOL300 for the former. Specifically, we
also optimize LARS [22] with weight decay 1.5 ·106. We set the initial learning rate 3.2 and
use a batch size of 4096. The target network has an exponential moving average parameter
τ = 0.996 and increased to 1.
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SimSiam-BSIM. We use the same setting as [4], which is similar to [12]. Note that the
weight decay of 0.0001 is applied for all parameter layers, including batch normalization
and bias.

3.2 Downstream classification

Linear classification on ImageNet for BYOL. BYOL [10] adopts a quite different setting.
To reproduce the baseline results, we train it for 90 epochs using the SGD optimizer with
0.9 momentum. Besides, we use L2 regularization with 0.0001 and a batch size of 256. The
initial learning rate is 0.01 and scheduled by the 0.1 × at epoch 30 and 60.

Linear SVM classification on VOC2007. Following [9, 17, 26], we use the res4 block
(notation from [8]) of ResNet-50 as the fixed feature representations and train SVMs [1]
for classification using LIBLINEAR package [7]. We train on the trainval split of the
VOC2007 dataset [6] and report the mean Average Precision (mAP) on the test split by 3
independent experiments. All methods are evaluated using the same hyper-parameters as in
[9].

Linear classification on ImageNet. We follow the linear classification protocol in [12]
where a linear classifier is appended to frozen features for supervised training. As for MoCo,
we train 100 epochs using SGD with a batch size of 256. The learning rate is initialized as
30 and scheduled by 0.1 × at epoch 30 and 60.

Low-shot classification on VOC2007. We evaluate the low-shot performance when each
category contains much fewer images. Following [9, 20, 26], we use seven settings (N=1, 2,
4, 8, 16, 32, 64 and 96 positive samples), train linear SVMs on the low-shot splits, and report
the test results across 3 independent experiments.

Evaluation on Semi-supervised Classification For semi-supervised training, we use the
same split 1% and 10% amount of labeled ImageNet images as done in [3, 24]. We follow
[3, 13, 15, 25] to finetune ResNet50’s backbone on the labeled data. We train 20 epochs using
SGD optimizer (0.9 momentum) with a batch size of 256. The learning rate is initialized as
0.01 and decayed by 0.2× at epoch 12 and 16.

3.3 Object Detection and Instance Segmentation

Evaluation on PASCAL VOC Object Detection Following the evaluation protocol by
[12] where ResNet50-C4 (i.e., using extracted features of the 4-th stage) is used as the back-
bone and Faster-RCNN [18] as the detector, we benchmark our method for the object de-
tection task on the VOC07 [6] test set. All models are finetuned on the trainval of
VOC07+12 dataset for 24k iterations. We use Detectron2 [21] like MoCo did. Results are
reported in Table 2, which are mean scores across five trials as [5] using the COCO suite
of metrics [16]. Combined with BSIM, BYOL achieves 1.4% higher AP and 0.8% higher
AP50.
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Method Epoch AP50 AP75 AP

supervised - 81.3 58.8 53.5
SimCLR (2020) 200 79.4 55.6 51.5
SimCLR-BSIM 200 79.8 56.0 51.8
SimCLR-WBSIM 200 80.0 56.2 51.9
MoCo (2020) 200 81.5 62.6 55.9
MoCoV2 (2020) 200 82.4 63.6 57.0
MoCoV2 (2020) 200 82.5 64.0 57.4
MoCoV2-BSIM 200 82.7 64.0 57.3
MoCoV2-WBSIM 200 83.0 64.2 57.5
SimSiam, base (2021) 200 82.0 62.8 56.4
SimSiam, optimal (2021) 200 82.4 63.7 57.0
SimSiam-BSIM 200 82.8 64.0 57.3
SimSiam-WBSIM 200 83.0 64.2 57.4
BYOL (2020) 200 81.0 56.5 51.9
BYOL-BSIM 200 81.8 58.4 53.3
BYOL-WBSIM 200 82.0 58.5 53.5
SwAV (2020) 800 82.6 62.7 56.1

Table 2: Detection results on PASCAL VOC trainval07+12, which are reported across 5 trials.
To make fair comparisons, the backbone is pre-trained for 200 epochs. MoCoV2-WBSIM trained 200
epochs surpasses MoCoV2 and SwAV trained for 800 epochs.

Method Epoch APb
50 APb

75 APb APm
50 APm

75 APm

Supervised - 59.9 43.1 40.0 56.5 36.9 34.7
SimCLR (2020) 200 59.1 42.9 39.6 55.9 37.1 34.6
SimCLR-BSIM 200 59.3 43.1 39.8 56.2 37.4 34.8
SimCLR-WBSIM 200 59.5 43.2 40.0 56.4 37.5 34.9
MoCo (2020) 200 60.5 44.1 40.7 57.3 37.6 35.4
MoCoV2 (2020) 200 60.1 44.0 40.6 56.9 38.0 35.3
MoCoV2-BSIM 200 60.3 44.2 40.9 57.0 38.2 35.4
MoCoV2-WBSIM 200 60.4 44.4 41.1 57.2 38.3 35.5
BYOL (2020) 200 60.5 43.9 40.3 56.8 37.3 35.1
BYOL-BSIM 200 60.8 44.2 40.7 57.0 37.5 35.3
BYOL-WBSIM 200 61.0 44.3 40.9 57.2 37.6 35.5
SwAV (2020) 800 59.8 42.0 39.1 56.2 36.1 34.2

Table 3: Object detection and instance segmentation fine-tuned results on COCO2017 dataset using
2× schedule.

Evaluation on COCO Objection Detection and Instance Segmentation We also follow
the evaluation protocol by [12] for the object detection and instance segmentation task on
COCO2017 [16]. Specifically, we use the ResNet50-C4 Mask R-CNN framework [11] and
follow 2× schedule [8] as [12] since this setting can make fairer evaluations. All models are
fine-tuned on the train2017 set and evaluated on val2017. We report the bounding box
AP and mask AP on COCO in Table 3.

3.4 Training and Memory Cost

All the experiments are done on Tesla V100 with 8 GPUs. We use a batch size of 2048
for the BYOL experiment and accumulate gradients to simulate a batch size of 4096. MoCo-
BSIM adds no extra memory cost to MoCo where we simply replace query samples with
mixed ones. Whereas the WBSIM version has to maintain the originally augmented query
samples to compute MoCo’s default loss. See details in Table 5.
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MoCo MoCo-BSIM MoCo-WBSIM
Memory(G) 5.5 5.5 8.2
Cost (Hour) 53 53 65

Table 4: Memory cost and training cost tested using a batch size of 256 across 8 GPUS. The training
cost is calculated based on 200 epochs.

Method Batch Size Memory (G) GPU Days
MoCo 256 44 17.7
MoCo-BSIM 256 44 17.7
MoCo-WBSIM 256 65.6 21.7
BYOL 4096 216 16
BYOL-BSIM 4096 216 16
BYOL-WBSIM 1024 200 28
SwAV 4096 819 33.3

Table 5: GPU resources cost. SwAV is tested on 64 V100-16G GPUs, others on 8 V100-32G GPUs.
The training cost is calculated based on 200 epochs.

The sampling process. For a mini-batch of samples with size N, theoretically, we can
sample λ for N times to enrich the information. Consequently, we can construct the loss
by using N different weighted items. However, this process can hardly be implemented
efficiently in the PyTorch framework. Instead, we make use of the 8 GPU workers and set
different seeds at the beginning of training. This approach is quite efficient and possesses
rich mixtures.

We also compare the performance of various methods given longer training epochs. The
results are listed in Table 6. Compared with MoCoV2, MocoV2-WBSIM can further im-
prove 0.3% top-1 accuracy on ImageNet validation dateset. Moreover, it can boost about 1
AP on VOC detection task.

Method Epoch ImageNet Acc VOC Detection
Top-1 Top-5 AP50 AP75 AP

MoCoV2 (2020) 800 71.1 - 82.5 64.0 57.4
MoCoV2-WBSIM 800 71.4 90.4 83.4 65.0 58.3

Table 6: Linear evaluation on ImageNet and object detection on VOC using ResNet50.

4 More Discussions
Comparison with mixture-based approaches. Shen et al. [19] propose a somewhat com-
plicated iterative mixture strategy exploiting Mixup [27] and CutMix [23] to generate a
weighted mixture of samples. The mixture can be considered a weakened version of the
original images which is harder to recognize, hence rendering flattened predictions. As sug-
gested from the label-smoothing perspective, it is meant to suppress incorrect response on
hard negative samples. However, image mixtures are used as-is, i.e., it learns the mixture-to-
mixture similarity when combined with MoCo [12], while we learn the similarity between
the mixture and its parents (forming spurious-positive pairs). This poses a fundamental dif-
ference as the loss has to be redesigned accordingly. Notice [19] also designs a too complex
approach to strive for semantical harmony by decaying the ‘context’ image while not neces-
sary in our case.
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TSNE Visualization to showcase the working mechanism of BSIM We extend the dis-
cussions about the working mechanism of BSIM. As mentioned Sec 5 (main text), BSIM’s
latent space is less crowded to facilitate discrimination. To better illustrate this benefit, we
pick 32 images and construct their mixtures and map their latent representations via TSNE,
see Figure 2. It turns out that BSIM works like a ruler that measures how far a mixed in-
stance should be from its parents. For instance, 6_25 (Figure 1) is distant from both 6 and
25 in SIM, while it is closer to 6 in BSIM. It is also evident that the latent space is evenly
spaced in BSIM than SIM. Recall that TSNE is a dimension reducing tool, whose visualized
distance is a relative measure in the latent space, not necessarily proportional to its crop size.
Hence 6_25 shall not be accurately centered in between 6 and 25 although only each half of
6 and 25 are used for the mixture. For SIM, 25_6 is close to 25 but 6_25 is far from both. For
BSIM, 6_25 is close to 6, but so is 25_6 to 25. This subtle difference exactly manifests the
difference of the two. That is, we stretch out the latent space in terms of the relative distance
of every two instances to their spurious pairs, while SIM can not.

Nevertheless, it is easier for decision making when instances are well-organized other
than cluttered. The mixture near decision boundary can serve as a pivot for quantitively sep-
arating instances, which also helps scattering the representations evenly in the latent space.

Figure 1: CutMix mixture for image 6 and 25 of Fig. 2. SIM is more sensitive to large color change.

Figure 2: The representation of 2D embeddings using TSNE. We use 32 images and construct the
mixture using i-th and 31− i-th images. The mixed embedding is marked by i_31− i. Without BSIM,
the embedding cannot make good use of the space (i.e. more crowded). Left: SIM, Right: BSIM.
Notice SIM pushes a simple mixture 6_25 (red) distant from others, leaving a narrow space and a large
amount of unused space. Besides, 12_19 and 19_12 (green) should be close but are pushed too far. In
contrast, in BSIM all instances are scattered quite evenly, while mixed instances are also better placed
near its parents.
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5 List of Additional Figures
Figure 3 demonstrates that BSIM has better intra-class discrimination that SIM.
Figure 4 shows the difference of mixed images between Mixup and CutMix, where the

latter is perceptually more natural.
Figure 5 illustrates a schematic view of latent sphere where the mixed representation is

normalized on the surface.
Figure 6 manifests the schematics of of SimCLR-BSIM.
Figure 8 gives the second implementation of BYOL-BSIM.
Figure 9 depicts the beta distribution given different α , where we choose α to have a

uniform distribution.

Figure 3: The representation of 2D embeddings using TSNE (sampled 3 times). We draw 10 instances
(denoted by number) from each class and make 5 times of data augmentation per instance. The same
class are denoted by the same color. BSIM has a better inter-class discrimination than SIM, where
instances of the same class are mostly distant from those of other classes.

λ = 0.10 λ = 0.30 λ = 0.50 λ = 0.70 λ = 0.90

λ = 0.10 λ = 0.30 λ = 0.50 λ = 0.70 λ = 0.90

Figure 4: Comparison of Mixup and CutMix with λ as the interpolation ratio for Mixup, and cutout
ratio for CutMix
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z̄i′′  

z̄j′′  
z̄i,j′′  

zi,j′′  

λ 1-λ

Figure 5: Schematic view of the unit ball in high-dimensional space. The target embedding of the
mixed image is z̄′′i, j, which is formed by normalizing z′′i, j (dashed in green) to the sphere of the unit ball.
z′′i, j is obtained by the λ controlled linear interpolation between z′′i and z′′j .

←Representation→ ←Representation→

xxxi xxx j

xxx′′i xxx′′jxxx′i, j

hhh′′i hhh′i, j

zzz′′i zzz′i, j

hhh′′j

zzz′′j

t ′′ ∼ T ′′ λ , t ′ 1−λ , t ′ t ′′ ∼ T ′′

f (·)

g(·)

f (·)

g(·)

f (·)

g(·)

sim sim

Figure 6: Adapting BSIM into SimCLR for contrastive learning. Given two images xi and x j (we use
j = N− i for speed-up within a batch of N samples), we generate a spurious-positive sample by mixing
separately augmented features (t ′ ∼ T ′) into x′i, j , which pairs with x′′i and x′′j . SimCLR is a special case
of SimCLR-BSIM when λ is 0 or 1. Note f (·) is an encoder network and g(·) refers to a projection
head, both are trained with the contrastive loss in Equation 1. The representation hhh is later used for
downstream tasks.

Encoder
Momentum 

Encoder

q k0, k1, k2, …

…

(q · k+λ, q · k+1-λ, q · ki)
gradient

xq xk

Lq

queue

k+

Figure 7: Applying BSIM to MoCo. Given a batch of images, we mix them in a pair-wise manner to
produce xq (only one mixture is shown for simplicity). We encode the mixed images as query q and the
whole current batch as keys k. We thus generate spurious-positive pairs from q and k, and the current
queue is used as negative samples.
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xxxi

xxx j

xxx′i

xxx′j

xxx′i, j yyy′
θ

zzz′
θ

qqqθ (z
′
θ
)

xxx′′i yyy′′i,ξ zzz′′i,ξ

xxx′′j yyy′′j,ξ zzz′′j,ξ

L′i,θ ,ξ

L′j,θ ,ξ

L′
θ ,ξ

t ′

t ′′

t ′
t ′′

λ

1−λ

fθ

fξ

fξ

gθ

gξ

gξ

qθ

λ

1−λ

Figure 8: Applying BSIM to BYOL as in Equation 4. The above blue region is the online network, the
below red one is the same target network.

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4 α = 0.25

α = 0.50

α = 0.75

α = 1.00

Figure 9: Probability density function of Beta distribution β (α,α) under different settings. Notice
when α = 1 we have a uniform distribution.
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