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Abstract

Infrared and visible image fusion is a fundamental task for image processing to en-
hance the image quality. To highlight target and retain effective details, different from
previous methods using integer gradients, we use the fractional gradient to well repre-
sent image features and propose a novel fractional optimization model to fuse infrared
and visible images. Specially, a fractional optimization function is designed with global
contrast fidelity and fractional gradient constraint to obtain the pre-fused image. Then,
the base layer of the pre-fused image obtained by multi-level decomposition latent low-
rank representation is taken as the fused base layer, while for the fusion of detail layers,
a fractional gradient energy function is designed to evaluate the importance of detail in-
formation to generate the fused detail layers. Compared with 10 state-of-the-art image
fusion methods qualitatively and quantitatively on two public datasets (TNO and Road-
Scene), our method generally shows superior performance.

1 Introduction
Generally speaking, infrared images can reflect the thermal radiation of an object and high-
light the target, but lack texture information. In contrast, visible images capture reflected
light information which contains rich texture and structure information, but are susceptible
to illumination and weather conditions. Therefore, using one kind of image alone cannot
provide sufficient information for practical applications such as RGB-T target tracking. To
solve this problem, infrared and visible image fusion is proposed, which can combine these
information to produce a robust fused image containing more detail textures. Figure 1 shows
an example of infrared and visible image fusion.

In recent years, researchers have proposed many methods to solve the problem of image
fusion, which can be roughly divided into two categories. The first is the traditional image
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(e) Visible image

(a) Infrared image

(g) DenseFuse 

(c) U2Fusion 

(f) Visible patch

(b) Infrared patch (d) Ours

(h) Ours

Figure 1: Examples of infrared and visible image fusion. While U2Fusion [23] cannot well
preserve the details of the target in infrared images due to the introduction of disturbing
visible information, DenseFuse [6] extracts unnecessary infrared information, resulting in
reduction of visible texture details. In contrast, the image generated by the proposed method
has a good balance of infrared and visible information with richer complementary details.

fusion methods [5, 8, 12, 13], among which the common methods are based on multi-scale
transformation. However, the conventional weighted fusion rule for the base layer often
makes the fused image ignore the global contrast, which makes it difficult to highlight the
target in complex scenes. And these methods usually do not well preserve useful detail
information, which is not conductive to subsequent tasks. The second is the fusion methods
based on deep learning [6, 7, 9]. These methods usually train the network by constructing the
loss function so that the fused image has the required distribution characteristics. Because
of the strong nonlinear fitting ability of neural network, these methods achieve good fusion
results. However, these methods still have disadvantages. In the case of insufficient training
data, network training is difficult, especially in infrared and visible image fusion task.

In this paper, we propose a new infrared and visible image fusion method based on
fractional optimization. To alleviate the problem that the general base layer fusion rules
easy to ignore the global contrast, we regard the fusion of the base layer as an optimization
problem, which uses fractional gradient to better represent image features. And the pre-fused
image is generated under the global contrast fidelity and fractional gradient constraint. Then,
the fused base layer is obtained by using MDLatLRR [8] to decompose the pre-fused image.
To sufficiently extract the useful detail information, a fractional gradient energy function is
designed to distribute the weight of detail information and generate the fused detail layers.
Finally, the fused image is reconstructed based on the fused base layer and detail layers.

The contributions of this paper are summarized as follows:

• We propose a novel infrared and visible image fusion method based on fractional opti-
mization model. Specifically, a new fractional optimization-based pre-fusion module
is designed to fuse the base layer, it introduces the global contrast of infrared images
and the fractional gradient information of both infrared and visible images. Moreover,
a fractional gradient energy function is innovatively proposed to evaluate the detail
layer information, it effectively preserves the rich and effective detail information of
infrared and visible images.
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• To make a fair and comprehensive comparison with other fusion methods, we conduct
comparative experiments on two public datasets. Experimental results show that the
proposed method performs better in subjective and objective evaluation.

2 Related Work

2.1 Multi-level decomposition based on LatLRR (MDLatLRR)

Recently, Li et al. [8] proposed a multi-level image decomposition method based on latent
low-rank representation (LatLRR), called MDLatLRR. In detail, given an input image I ∈
RH×W , the base layer Ii

b ∈RH×W and detail layers Ii
d ∈RH×W of the input image are obtained

by LatLRR-based decomposition at level i. The base layer and detail layers are obtained
below.

F i
dk = Q×P(Ii−1

bk ), Ii
bk = Ii−1

bk − Ii
dk,

Ii
dk = R(F i

dk), I
0
bk = Ik, i = [1,2, · · · ,L],

(1)

where k denotes the number of images. i is the decomposition level. ‘×’ denotes dot product.
According to MDLatLRR [8], Q denotes the projection matrix learned by LatLRR [10] and
the size is 256×256. P(·) represents a two-stage operator composed of sliding window and
recombination technology. F i

dk represents the detail features and the size is 256× [(H −
S)/s+ 1]× [(W − S)/s+ 1]. S and s represent the size and stride of the sliding window,
respectively. Here, S = 16 and s = 1. R(·) represents the reconstruction operator.

2.2 Infrared and visible image fusion

Infrared and visible image fusion is one of the mainstream of image fusion. Over the past
few decades, researchers have proposed many methods [13, 22, 24] . Wang et al. [22] used
a non-negative sparse representation method to extract features from source images. Ma
et al. [13] proposed a gradient transfer fusion algorithm, which can realize the fusion of
images without pre-registration and improve the applicability of the algorithm. Zhang et
al. [24] used intuitionistic fuzzy sets to extract high-frequency detail features from infrared
and visible images. Although these methods have achieved good results, the selection of
feature extraction methods and the difficulty of designing fusion rules limit the development
of traditional methods.

Due to the powerful feature extraction capability of deep learning, more and more deep
learning-based infrared and visible image fusion methods have been proposed in recent
years [7, 9, 19, 20]. Li et al. [7] established two kinds of attention models to character-
ize the importance of deep features. Li et al. [9] proposed an end-to-end residual fusion
network and designed learnable fusion rules. Tang et al. [20] proposed a real-time image
fusion network based on semantic perception. However, since ground truth is usually absent
for this fusion task, utilizing supervised learning is a major hurdle for infrared and visible
light image fusion.

Inspired by literature [8], we use MDLatLRR to obtain the multi-layer features of the
source images, then combine the advantages of fractional model to design the fusion rules.
Thus, we propose a new optimization model for infrared and visible image fusion to improve
the fusion performance.
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Figure 2: The overview of the proposed method.

3 Proposed Method
To mitigate the problem that common methods tend to ignore global contrast and insufficient
extraction of relevant details, we propose a new image fusion method based on fractional
optimization. The framework is shown in Figure 2. Specially, a optimization function is de-
signed with global contrast fidelity and fractional gradient constraint, and a Sylvester-based
optimization method is used to obtain the pre-fused image. Then, the base layer of the pre-
fused image obtained by MDLatLRR is taken as the fused base layer. For the fusion of detail
layers, the fractional gradient energy function is introduced to evaluate the importance of de-
tail information to generate the fused detail layers. Finally, the fused image is reconstructed
by the fused base layer and detail layers.

3.1 The fusion of base layer
Fractional derivative, as a generalization of integer derivative, has the characteristics that
integer derivative does not have. It can represent the high-frequency and low-frequency
information in the image better. The base layer of the image contains most of the global
features and contrast information of the image. To make the fused image have higher contrast
and more global features, this paper uses fractional optimization to generate the pre-fused
image, which retains the contrast of the infrared image and extracts the fractional gradient
features of the infrared and visible images. The optimization model of pre-fused image fpre
generated according to infrared image fir and visible image fvis is as follows:

argmin
f

1
2
∥ f − fir∥2

F +
µ

2
∥Dv f f −Dv fir fir −Dv fvis fvis∥2

F , (2)

where ∥·∥F represents the Frobenius norm. µ = 100. Dvs denotes the v-order discrete frac-
tional gradient of s ∈ Rn×n [16].

Dvs =
(

Ms
sM

)
∈ R2n×n,M =



2cv
1 c cv

3 · · · cv
n

c 2cv
1

. . . . . .
...

cv
3

. . . . . . . . . cv
3

...
. . . . . . 2cv

1 c
cv

n · · · cv
3 c 2cv

1


∈ Rn×n, (3)
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and

cv
k = (−1)k

(
v
k

)
,cv

0 = 1,c = cv
0 + cv

2,(D
v)T

(
s1
s2

)
= Ms1 + s2M. (4)

The first term of Eq.(2) ensures that the fused image f and infrared image fir has similar
contrast, and the second term ensures that the fused image f retains the fractional gradient
features in infrared image fir and visible image fvis. Here, we set v f = 0.5v fir +0.5v fvis . Fur-
thermore, the impact of two parameters v fir and v fvis on model performance will be discussed
in Section 4.4.

For the optimization solution of Eq.(2), we can obtain from the first-order condition:

f − fir +µ(Dv f )T (Dv f f −Dv fir fir −Dv fvis fvis) = 0, (5)

then based on Eq.(3) and Eq.(4), we can obtain that:

f +µ(M2
v f

f + f M2
v f
) = fir +µ(Dv f )T (Dv fir fir)+µ(Dv f )T (Dv fvis fvis), (6)

and
(E +µM2

v f
) f + f (µM2

v f
) = (E +µMv f Mv fir

) fir + fir(µMv fir
Mv f )

+ fvis(µMv fvis
Mv f )+(µMv f Mv fvis

) fvis,
(7)

where E denotes the identity matrix. We can find that Eq.(7) is equivalent to the form of AX+
XB = C, namely Sylvester equation. It can be solved by the Bartels-Stewart algorithm [3].
More details of the optimization model are provided in the Supplementary Materials.

The pre-fused image fpre can be obtained by solving Eq.(2). In addition, to obtain multi-
level features, we perform MDLatLRR decomposition on the source images and the pre-
fused image to obtain the base layer and the detail layers, respectively. The base layer of the
pre-fused image is directly used as the fused base layer, because the pre-fused image retains
a large amount of energy information of the source images and controls global contrast.
Therefore, the fused base layer can be obtained by:

Ib f = MDLatLRR( fpre), (8)

where MDLatLRR is denoted by Eq.(1).

3.2 The fusion of detail layers
Compared with the base layer, detail layers contain a large amount of texture details of the
image. Here, we use the infrared image and visible image to perform the fusion operation
of the detail layers. Because fractional differential operators can enhance high-frequency
features while retaining low-frequency information [17], we put forward a new fractional
gradient energy function to extract detail features, which is defined as follows:

FGE i
dk =

M−1

∑
x=1

N−1

∑
y=1

{[G1 ∗F i
dk(m,n)]2 +[G2 ∗F i

dk(m,n)]2}, (9)

where G1 and G2 are two masks in negative x- and y- directions of fractional differential
operator YiFeiPU-1 [17]. ‘∗’ denotes the convolution operation. Here, we set k = [1,2]. It is
worth noting that the determination of the order is very important for fractional differential
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operator. Therefore, we propose an adaptive fractional order calculation method based on
modified spatial frequency and average gradient. The calculation formula is described as:

v = (a−b) · f (U)−min(U)

max(U)−min(U)
+b,

f (U) = tanh(U) =
eU − e−U

eU + e−U ,

U =
1
π
· (tan(MSF)+ tan(AG)),

(10)

where a = 0.6, b = 0.5 [26], MSF and AG denote modified spatial frequency and average
gradient, respectively.

In our method, the fractional gradient energy function is used to calculate the weights of
corresponding features. The calculation is as follows:

ω
i
dk(m,n) =

FGE i
dk(m,n)

∑
K
k=1 FGE i

dk(m,n)
,

F i
d f (m,n) =

K

∑
k=1

ω
i
dk(m,n)×F i

dk(m,n),

Ii
d f = R(F i

d f ), i = [1,2, · · · ,L].

(11)

After obtaining the fused detail layers and base layer, we can obtain the fused image by
the following formula.

I f = Ib f +
L

∑
i=1

Ii
d f . (12)

4 Experimental Results

4.1 Datasets and implementation details

We evaluate the performance of the proposed method on two public datasets, namely TNO
natural scene dataset [21] and RoadScene dataset [23]. The datasets used are pre-registered
images. And for the decomposition layers of MDLatLRR, we set L = 4 similar to Ref [8].

Our method is compared with 10 state-of-the-art image fusion methods. These methods
include non-deep learning methods (DCHWT [5], CVT [11], NSCT [11], ConvSR [12],
GTF [13], MDLatLRR [8]) and deep learning methods (DenseFuse [6], FusionGAN [14],
IFCNN [25], U2Fusion [23]). The parameters of each of 10 comparison methods are set
according to the optimal parameter settings reported in the corresponding papers.

To quantitatively compare the proposed method with other existing fusion methods,
six quality evaluation indexes are used. These are: entropy (EN) [1]; standard deviation
(SD) [18]; correlation coefficient (CC); mutual information (MI) [4] indicates how many
features are preserved in the fused image; MS-SSIM [15] focuses on structural information;
and the sum of the correlations of differences (SCD) [2]. The larger the values of these
metrics, the better the fusion performance.
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(c) DCHWT (d) ConvSR (e) GTF (f) MDLatLRR(a) Infrared image (b) Visible image

(g) DenseFuse (h) FusionGAN (i) IFCNN (j) U2Fusion (k) Ours_1 (l) Ours_2

Figure 3: The fusion results of one pair of images on TNO dataset. Note “Ours_1”
and “Ours_2” denote the proposed methods using parameters (v fir =0.3,v fvis=0.3) and
(v fir =0.3,v fvis=0.9), respectively.

Table 1: Average quantitative results on TNO dataset (red: the best, blue: the second best).

Methods EN SD MI CC MS-SSIM SCD
DCHWT [5] 6.5678 64.9789 13.1355 0.4272 0.8433 1.6099
ConvSR [12] 6.2587 50.7437 12.5174 0.4922 0.9028 1.6482

GTF [13] 6.6343 67.5436 13.2687 0.3228 0.8084 1.0049
MDLatLRR [8] 6.9774 83.7741 13.9555 0.4393 0.8517 1.6332
DenseFuse [6] 6.6716 54.3575 13.3431 0.4994 0.9290 1.8350

FusionGAN [14] 6.3629 54.3575 12.7257 0.4257 0.7318 1.4569
IFCNN [25] 6.5955 66.8758 13.1909 0.4659 0.9053 1.7138

U2Fusion [23] 6.7571 64.9116 13.5142 0.5010 0.9253 1.7984

Ours
v fir =0.3,v fvis =0.3 6.8174 72.2746 13.6348 0.4880 0.9281 1.8291
v fir =0.3,v fvis =0.9 7.0294 93.1529 14.0588 0.3935 0.9065 1.5680

4.2 Performance comparison on TNO dataset

Figure 3 shows the qualitative fusion results of different methods on TNO dataset. The
results show that all fusion methods can preserve the information of the source images to
varying degrees. However, the target in the fused images obtained by DCHWT, ConvSR,
DenseFuse and U2Fusion are not effectively highlighted (see the red regions). This is be-
cause these algorithms cannot effectively extract the target information of the infrared image
into the fused image. Although GTF, MDLatLRR, FusionGAN and IFCNN can effectively
highlight the target in the image, they cannot preserve the texture details of the source images
(see the yellow regions). Especially for GTF and FusionGAN, too many texture features are
lost in fused images. Compared with other methods, our proposed method shows a good
balance between preserving details and highlighting targets.

Table 1 presents the quantitative results of all fusion methods on 21 pairs of images
on TNO dataset. The results show that the proposed method performs the best on three
evaluation indexes (EN, SD and MI). Moreover, the performance on MS-SSIM and SCD is
sub-optimal. Especially, the objective indexes values of MDLatLRR [8] is lower than that of
our method, and its EN, SD and MI are lower than those of Ours_2 (v fir =0.3,v fvis=0.9). Its
CC, MS-SSIM and SCD are lower than those of Ours_1 (v fir =0.3,v fvis=0.3). For comparison
with deep learning-based methods, our method is higher than U2Fusion in all evaluation
indexes, except CC.
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(c) DCHWT (d) CVT (e) NSCT(a) Infrared image (b) Visible image

(f) DenseFuse (g) FusionGAN (h) IFCNN (i) U2Fusion (j) Ours_1 (k) Ours_2

Figure 4: The fusion results of one pair of images on RoadScene dataset. Note “Ours_1”
and “Ours_2” denote the proposed methods using parameters (v fir =0.3,v fvis=0.3) and
(v fir =0.3,v fvis=0.9), respectively.

Table 2: Average quantitative results on RoadScene dataset (red: the best, blue: the second
best).

Methods EN SD MI CC MS-SSIM SCD
DCHWT [5] 7.1710 63.0711 14.3420 0.4687 0.8283 1.4725

CVT [11] 7.0159 57.2032 14.0319 0.5255 0.8721 1.5710
NSCT [11] 6.9471 56.0915 13.8942 0.5387 0.9282 1.5965

DenseFuse [6] 6.6755 48.7363 13.3510 0.5583 0.8531 1.5607
FusionGAN [14] 7.1753 67.0645 14.3507 0.4416 0.7352 1.3753

IFCNN [25] 6.9730 56.8367 13.9461 0.5322 0.8798 1.5889
U2Fusion [23] 7.1969 68.0394 14.3938 0.5295 0.9250 1.7984

Ours
v fir =0.3,v fvis =0.3 7.2357 70.8168 14.4714 0.5498 0.9058 1.8250
v fir =0.3,v fvis =0.9 7.2378 70.5262 14.4756 0.4825 0.8680 1.5497

The maximum EN and SD indicate that the fused images obtained by our method con-
tain more information. The maximum MI shows that the fusion results obtained by the
proposed method have higher mutual information similarity with the source images. The
sub-optimal values on MS-SSIM and SCD indicate that the structural similarity and correla-
tion between the fused images obtianed by our method and the source images is lower than
that of DenseFuse, but better than the remaining methods.

4.3 Performance comparison on RoadScene dataset

Figure 4 shows the qualitative fusion results of different methods on RoadScene dataset. As
shown in Figure 4, due to the introduction of too much interference information from the
visible image, the 7 comparison methods lost some details, e.g., the car, the traffic light, the
sign. DCHWT and FusionGAN introduce excessive noise into the fused images. The fusion
results obtained by CVT, NSCT, DenseFuse and IFCNN have different degrees of contrast
reduction, which are closer to the infrared images. It is not conductive to human observation.
While the fused image obtained by U2Fusion has high contrast, the detials of the traffic light
are some blurry (see the red regions). In contrast, our method provides more details and
reduces noise effects through fractional optimization, thus preserving the complementary
information of the source images more completely.

Table 2 shows the quantitative fusion results of different methods on RoadScene dataset.
As shown in Table 2, our method achieves the best or sub-optimal results on all evaluation
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Table 3: Analysis on the key components of the proposed method on TNO dataset.

Methods SD CC MS-SSIM SCD
MDLatLRR [8] 83.7741 0.4393 0.8517 1.6332

MDLatLRR+model-1 88.9609 0.4626 0.8567 1.7399
MDLatLRR+model-2 91.3343 0.4225 0.7877 1.5675

Ours 93.1529 0.4880 0.9281 1.8291

Table 4: Fusion results on TNO dataset using different parameter combinations (v fir ,v fvis ).

v fir v fvis EN SD MI MS-SSIM SCD

0.3
0.3 6.8174 72.2746 13.6348 0.9281 1.8291
0.6 6.9920 87.9021 13.9841 0.9196 1.7472
0.9 7.0294 93.1529 14.0588 0.9065 1.5680

0.6
0.6 6.8527 74.1245 13.7054 0.9267 1.7948
0.9 6.8359 77.1384 13.6718 0.9175 1.6886
1.2 6.7987 76.3516 13.5973 0.9167 1.7118

0.9
0.9 6.8537 79.2122 13.7074 0.9231 1.7675
1.2 6.8265 77.4651 13.6530 0.9222 1.7574
1.5 6.8398 77.8568 13.6796 0.9216 1.7610

1.2
1.2 6.8243 77.0069 13.6486 0.9236 1.7516
1.5 6.8292 78.3813 13.6584 0.9237 1.7552
1.8 6.8427 78.5622 13.6854 0.9235 1.7604

1.5 1.5 6.8210 76.7004 13.6421 0.9234 1.7483
1.8 6.8285 77.4367 13.6570 0.9233 1.7521

1.8 1.8 6.8216 76.9553 13.6433 0.9230 1.7494

metrics except MS-SSIM. Since our method removes some interference structural informa-
tion through fractional optimization control, it does not have many advantages in the index
MS-SSIM based on structural information, but its practical application effect is far greater
than this. Furthermore, although neural network methods are commonly used for image fu-
sion today, as shown in Table 2, the performance of DenseFuse, FusionGAN, IFCNN and
U2Fusion is generally not better than our proposed method. The experimental results can
illustrate that our method has high fidelity to the source images and highlights the target.

4.4 Analysis and discussion

The key components of the proposed method are the generation of the pre-fused image based
on fractional optimization function (model-1) and detail layers fusion based on fractional
gradient energy function (model-2). This section discusses the performance contribution of
these components.

We first select MDLatLRR [8] as the baseline method. Then, we transplant model-1 and
model-2 to MDLatLRR respectively to verify their effectiveness on fusion performance. The
experimental results are shown in Table 3. It can be seen that the indexes of the transplanted
methods are mostly higher than those of MDLatLRR. Moreover, our final model achieves
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the best among the three methods. This further illustrates the effectiveness of our method in
infrared and visible image fusion.

Furthermore, the parameter settings are very important in the fractional optimization
function. Since different combinations of v fir and v fvis lead to different fusion results, we
analyze the impact of these two parameters on the fusion results from the range of [0.3,1.8].
The objective evaluation values obtained by different combinations are shown in Table 4.
As can be seen from Table 4, when v fir =0.3, v fvis=0.3/0.9, the fusion result obtained by our
method performs the best on five metrics. Therefore, based on this analysis, we set the
parameters of the model as v fir =0.3, v fvis=0.3/0.9.

5 Conclusions
In this paper, we propose an infrared and visible image fusion method based on fractional
optimization model. The method consists of two stages, which can efficiently extract target
features and detail textures of source images. Firstly, a pre-fused image is generated by the
fractional gradient optimization function. Secondly, the base layer of the pre-fused image
obtained by using the multi-layer decomposition tool is used as the fused base layer. For the
fusion of detail layers, the detail information is evaluated by the designed fractional gradient
energy function to retain important detail features. The experimental results show that the
proposed method has good qualitative and quantitative performance on two public datasets
(TNO and RoadScene). Overall, our method can better highlight targets while retaining more
useful details from source images. Moreover, the proposed method can also be extended to
various computer vision applications such as infrared target detection and RGB-T tracking.
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