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Abstract

Road scene understanding tasks have recently become crucial for self-driving ve-
hicles. In particular, real-time semantic segmentation is indispensable for intelligent
self-driving agents to recognize roadside objects in the driving area. As prior research
works have primarily sought to improve the segmentation performance with computa-
tionally heavy operations, they require far significant hardware resources for both train-
ing and deployment, and thus are not suitable for real-time applications. As such, we
propose a doubly contrastive approach to improve the performance of a more practical
lightweight model for self-driving, specifically under adverse weather conditions such as
fog, nighttime, rain and snow. Our proposed approach exploits both image- and pixel-
level contrasts in an end-to-end supervised learning scheme without requiring a memory
bank for global consistency or the pretraining step used in conventional contrastive meth-
ods. We validate the effectiveness of our method using SwiftNet on the ACDC dataset,
where it achieves up to 1.34%p improvement in mIoU (ResNet-18 backbone) at 66.7 FPS
(2048×1024 resolution) on a single RTX 3080 Mobile GPU at inference. Furthermore,
we demonstrate that replacing image-level supervision with self-supervision achieves
comparable performance when pre-trained with clear weather images.

1 Introduction
Road scene understanding tasks have recently been popular areas of research, gaining trac-
tion with the growth of deep learning and interests in intelligent driving agents. In particular,
in the field of autonomous driving, achieving high performance in the task of semantic seg-
mentation is key to recognizing roadside objects in the scene ahead [24, 47]. A number of
existing semantic segmentation models follow the encoder-decoder structure [4, 7, 24, 38] or
a multi-scale pyramidal encoder followed by upsampling [19, 28, 29, 40] to categorize each
pixel into the defined set of object classes, with 2D RGB images as input.

However, as intelligent driving systems require safe and accurate perception of the sur-
roundings in dynamically changing environments, most heavyweight models that focus pri-
marily on the performance are not suitable for practical real-time deployment. In addition,
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although various methods target semantic segmentation of the 19 Cityscapes [10] bench-
mark classes under clear, daytime weather conditions and have been useful in most normal
road scenarios, their direct application under adverse driving conditions, or “unusual road or
traffic conditions that were not known" as defined by the US Federal Motor Carrier Safety
Administration [14] (e.g., fog, nighttime, rain, snow), has yet to be explored further [35]. In
this light, a number of models and datasets have been proposed to boost the segmentation
performance under such adverse conditions [12, 33, 34, 44] as there are 1.3 million death toll
of road traffic crashes every year, and the risk of accidents in rainy weather, for example, is
70% higher than in normal conditions [3, 27]. In this approach, we seek to adapt and extend
the segmentation capability of intelligent self-driving agents to such adverse conditions by
exploiting a lightweight model and minimizing additional costs for ground truth labels.

To this end, we propose a doubly contrastive end-to-end learning method for a lightweight
semantic segmentation model under adverse weather scenarios. Given an RGB image as in-
put, our proposed strategy optimizes according to the supervised contrastive objective in
both image- and pixel-levels in an end-to-end manner, in addition to the segmentation loss.
In contrast to the previous contrastive learning approaches, we target an end-to-end train-
ing with direct feature learning, eliminating the pre-training stage in the common two-stage
training scheme, and also examine how much of a performance boost image-level labels can
further contribute in the supervised semantic segmentation task.

We highlight our main contributions in three-fold:

• We propose an end-to-end doubly (image- and pixel-levels) contrastive learning strat-
egy for a lightweight semantic segmentation model to eliminate the pre-training stage
in the conventional contrastive learning approach without requiring a large training
batch size or a memory bank.

• Our training method achieves 1.34%p increase in mIoU measure from the baseline fo-
cal loss-only objective with the SwiftNet architecture (ResNet-18 backbone), running
inference at up to 66.7 FPS in 2048×1024 resolution on a single Nvidia RTX 3080
Mobile GPU.

• We verify that replacing image-level supervision with self-supervision in our super-
vised contrastive objective achieves comparable performance when pre-trained with
clear weather images.

2 Related Work
Supervised semantic segmentation. In categorizing each pixel into its representative se-
mantic class, many previous studies have employed the encoder-decoder structure [4, 24,
25, 31]. An encoder-decoder network consists of an encoder module that gradually reduces
the feature maps to capture enriched semantic features, and a decoder that also gradually
proceeds to recover the spatial information. This structure allows for faster computation as
it does not make use of dilated features in the encoder and can recover sharp object bound-
aries in the decoder [4, 31]. Extending this structure, DeepLabV3+ [7] adds a multi-scale
aspect in the encoder as well as depth-wise separable convolution and atrous spatial pyramid
pooling (ASPP) to obtain sharper segmentation outputs. While it lowers the computational
cost overhead, it is still heavy in size (e.g., in floating point operations (FLOPs)) for prac-
tical deployment. On the other hand, SwiftNet [28] uses a real-time, efficient encoder that
sequentially extracts and concatenates multi-scale pyramidal features, and ENet [29] is an
even lighter model which extracts features in a single scale only.
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Representation learning without supervision. The original idea of matching represen-
tations of a single image in agreement dates back to [5] and in the direction of preserving
consistency in representations, [6, 42] advance the idea in semi-supervised settings. Previ-
ous attempts to adjust data representations appropriately to a specific task include learning
with pretext tasks such as relative patch prediction [13], jigsaw puzzle solving [26], coloriza-
tion [18] and rotation prediction [16]. A representative approach to learning generalized data
representation by contrastive learning is SimCLR by Chen et al. [8], an augmentation-based
contrastive learning method for consistent representations. It operates by augmenting the
input with two random transformations and maximizing their mutual agreement, thereby
achieving comparable performance to the supervised setting in image classification after
pre-training on relevant pretext tasks. [9] extends SimCLR by further enhancing the repre-
sentation learning capability with a larger model architecture, and validates its effectiveness
when fine-tuned or distilled onto another smaller network.
Representation learning with supervision. SupContrast [20] extends SimCLR by di-
rectly incorporating image-level labels for the image classification task. In this supervised
scheme, pairwise equivalance matching of representations based on their category labels en-
hances the push-pull effect in the feature space during training. In semantic segmentation,
[41] introduces cross-image pixel-wise contrast to explicitly address intra-class compactness
and inter-class dispersion phenomena to consider pixel-wise semantic correlations globally.
However, as most contrastive representation learning methods are limited by a smaller mini-
batch size than the number of necessary negative samples in practice, [41] stores all region
(pooled) embeddings from training data in an external memory bank, transposing the loss
from pixel-to-pixel to pixel-to-region. Another work in a semi-supervised setting [2] also
uses a memory bank to store class-wise features learned from a teacher network, from which
a subset of selected features are used as pseudo-labels for the student network in its pixel-
wise contrast. Although both are trainable end-to-end owing to a memory bank, they do
require considerable memory resources for storing feature embeddings.
Mixed supervision. Many works have sought to reduce human costs for acquiring labels
by leveraging weak labels as well. [43] proposes a unified algorithm that learns from various
forms of weak supervision including image-level tags, bounding boxes and partial labels
to produce pixel-wise labels, and [1, 30] only utilize image-level labels as weak priors to
generate accurate segmentation labels. As such, weak labels such as image-level labels have
become useful in learning precise mappings from RGB to segmentation maps.

3 Methodology

3.1 Preliminaries

Self-Supervised Contrast. For a set of N randomly sampled image-label pairs, {xk,yk}k=1...N ,
we prepare a corresponding multi-viewed set of augmented samples originating from the
same sources, {x̃k, ỹk}k=1...2N , where each consecutive kth- and (k+ 1)th-index sample pair
originates from the same source. We take a batch of data containing two sets of N arbi-
trarily augmented samples as input to the self-supervised contrastive loss, following [8, 20]
which stem from InfoNCE [17, 39]. We let i ∈ I ≡ {1, . . . ,2N} be the anchor index, and the
corresponding other augmented sample as j(i) (positive). For zi = Pro j(Enc(x̃i)) ∈ RDpro j ,
we apply the inner (dot) product and softmax operations on the i-th and the corresponding
j(i)-th projected encoded representations, as follows:
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Lsel f = ∑
i∈I

L(i)
sel f =−∑

i∈I
log

exp(zi · z j(i)/τ)

∑
a∈A(i)

exp(zi · za/τ)
(1)

where A(i)≡ I \ i and the remaining set of images {k ∈ A(i)\ j(i)} contains 2(N−1) number
of negative samples. τ ∈ R+ is the temperature parameter for the softmax, whereby the
higher the temperature value, the softer (lower) the logits output of the softmax function.
For each anchor i, we use 1 positive pair and 2N − 2 negative pairs, thus in total of 2N − 1
terms to obtain the loss value.
Supervised Contrast. For image-level supervised contrast, there are present more than
one sample belonging to each image class label. We thus take the average of all values over
all positives for the anchor sample i, such that P(i)≡ {p ∈ A(i)|ỹp = ỹi}. Note that the key
difference between self-supervised and supervised contrastive approaches is that for each
anchor, multiple positives and negatives from the same and different classes, respectively,
are considered rather than different data augmentations of the same anchor. Following the
loss objective in [20] which takes the summation outside the log operator, we define the
image-level supervised contrastive loss as follows:

Limage = ∑
i∈I

L(i)
image =−∑

i∈I

1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑
a∈A(i)

exp(zi · za/τ)
(2)

where |P(i)| denotes the cardinality of the set of positives. Note that easy positives and
negatives (i.e., the dot product ∼ 1) contribute to the gradient relatively smaller than the hard
positives and negatives (i.e., the dot product ∼ 0). We refer to [20] for detailed proofs.

Pixel-level supervised contrastive loss follows a similar form as the image-level, except
that the representation is on the each pixel rather than the entire sample, and positives and
negatives come from the same image rather than from two randomly augmented images. As
in Wang et al. [41], the pixel-wise contrast loss addresses two limitations in using the cross-
entropy (CE) loss, in which (1) it penalizes predictions neglecting the pixel-wise semantic
correlations, and (2) the relative relations among pixel-wise logits fail to directly supervise
on the features. We formulate the pixel-level supervised contrastive loss as follows:

Lpixel =− 1
|P(i)| ∑

ip∈P(i)
log

exp(i · ip/τ)

∑
ia∈A(i)

exp(i · ia/τ)
∀i ∈ {1, . . . ,H ×W}, (3)

where A(i) ≡ Q \ i, in which Q represents the set of all pixels in the multi-viewed data
batch and i denotes the pixel anchor index in a given image. P(i) denotes pixel embedding
collections of the positive samples for each pixel i in an image of size H ×W .

3.2 Doubly Contrastive Supervised Segmentation
We remark that our approach as shown in Fig. 1 is, in fact, also applicable to other su-
pervised semantic segmentation tasks in which we have available ground truth pixel-level
semantic labels as well as the corresponding image-level labels for those pixels in each im-
age. Adverse weather conditions is one such case where we can readily acquire and exploit
image-level contexts to promote contextual contrastive learning under unfavorable outdoor
weather conditions.
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Figure 1: Overview of the training pipeline (top) and SwiftNet architecture (bottom).

The base model for our experiments is SwiftNet [28] with the ResNet-18 backbone to
balance the trade-off between the accuracy and the scale of model parameters and computa-
tions. SwiftNet is advantageous for its light weight and effectiveness in self-driving scenarios
that often require real-time inference speed as well as comparably high performance to those
of large-scale models [36]. Moreover, its multi-scale pyramidal features extracted from the
sequential encoder blocks provide scale-invariant features that capture spatial information
more precisely than single-scale models [21].

Loss objective. Standard semantic segmentation networks have long been trained ac-
cording to the pixel-wise CE loss given class-specific probability distributions by weighting
all pixels equally and considering the frequency of pixels belonging to each class [28, 46].
This approach, however, is prone to overfitting and biased towards more frequent classes.
In addition, the CE loss suffers from failing to recognize edges in pixel-level granularity.
To remedy these problems, [23, 28] have employed class balancing by adopting a scaling
coefficient term to weight each class in a less biased and balanced manner.

We thus follow [36] in order to weight the cross-entropy and the focal loss [23] with
the class-balancing term as described in Eq. 4, where we take the inverse logarithm of the
ratio of the frequency of each pixel appearance, f reqc, over the entire pixels in the dataset,
Np. We choose ε = 1× 10−1 for numerical stability. The Euclidean distance transform
(EDT) [15] serves to weight each pixel by the distances to the boundaries of other objects.
That is, for each pixel p in a given image grid GH×W , we compute the L2 distance to the
nearest unmasked pixel q, i.e., the closest valid pixel belonging to the set of classes, C as in
Eq. 4.b. With both EDT and class-balancing terms in effect, the pixels of smaller objects and
object boundaries are weighted greater than more frequently seen pixels such as those of sky
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or road classes during training.

Lseg
(
φ(p), φ̂(p)

)
=−δ (p)eγ(1−Pt )log(Pt), (4)

with

δ (p) = log
(

1+ ε +
f reqc(p)

Np

)−1

︸ ︷︷ ︸
Class balancing

·exp
(
−dEDT (p)

2σEDT

)
︸ ︷︷ ︸

EDT

, (4.a)

dEDT (p) = ∑
C

min
q∈C

∥p−q∥2 ∀p ∈ GH×W , (4.b)

where Pt denotes the softmax probability for each semantic class, and φ(p) and φ̂(p) are
the ground truth and the predicted segmentation maps, respectively. We then combine the
segmentation and the contrastive loss terms as the final loss objective as follows:

L= λc · (Limage +Lpixel)+λs ·Lseg, (5)

where λc = 1/B, λs = 1.2 and B is the batch size. For Limage and Lpixel , we further add
stability during training by adding L2 normalization to the inner product (i.e., ∥zi · zp∥2) to
directly mimic the cosine similarity. The scaling coefficients, λc and λs, are experimentally
determined so as to reduce the unfavorable effect of feature equivalence matching and place
a greater weight upon the segmentation objective. We also scale the contrastive loss value
empirically to be close to the segmentation loss value. In this combined objective, the image-
level contrast complements the pixel-level contrast such that the semantic correlations among
intra-image pixels of each image are consistent across images of different weather classes
globally without a memory bank. For the following experiments that use self-supervision in
place of image-level contrast, we simply replace Limage with Lsel f .

4 Experiments

4.1 Datasets and Evaluation Metric
We evaluate the proposed method using the training and validation sets of an urban street
scene dataset, the Adverse Conditions Dataset with Correspondences for Semantic Driving
Scene Understanding (ACDC) [35], with and without pre-training on another driving scene
benchmark dataset, the Cityscapes [10] as described in Table 1.

Cityscapes is a road scene benchmark dataset containing stereo RGB images taken from
the egocentric point of view of the driver under clear, daytime weather, with pixel-level
annotations for 19 semantic classes of various roadside objects including bus and fence.
ACDC is a smaller dataset labelled according to the Cityscapes categories, yet in adverse
conditions (fog, nighttime, rain and snow). While other Cityscapes-like datasets [11, 12,
33, 34, 37, 44, 45] contain few to several hundred images biased toward specific adverse
conditions, ACDC offers evenly-balanced number of images and the corresponding labels.

We evaluate the semantic segmentation performance by the mean Intersection-over-Union
(IoU), also known as the Jaccard Index. IoU is often computed using the confusion matrix,
from which we obtain true positive (TP), false positive (FP) and false negative (FN) scores
for the predictions on the validation set, i.e., IoU = TP / (TP+FP+FN). The average IoU
score computed over all fine category labels is denoted by mIoU, neglecting the void label.
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Table 1: Dataset Description

Dataset Input Modality Resolution Anno. (# Classes)
Weather

Condition Train Val Test

Cityscapes [10] Stereo RGB 2048×1024 Fine (19) Clear/Daytime 2,975 500 1,525

ACDC [35] Monocular RGB 1920×1080 Fine (19)

All 1,600 406 2,000

Fog 400 100 500
Nighttime 400 106 500

Rain 400 100 500
Snow 400 100 500

4.2 Implementation Details

We performed our experiments on a single Nvidia RTX 3090 GPU with PyTorch 1.7.1,
CUDA 11.1, and CUDNN 8.3.2. In order to account for scale variations, we augmented the
data with the following transformation: random square crop (768×768) followed by scaling
by a random value sampled from a uniform distribution∼U(0.5,2.0). We did not apply
transformations that could potentially harm the image quality in adverse weather conditions
such as color jitter. We set the validation image width and height to those of Cityscapes
(2048×1024) for fair comparison of the segmentation results. We pre-trained each model
with ImageNet [32] and set γ = 0.5 in the focal loss, the temperature τ = 0.07, and the
feature dimension to Dpro j = 128 for the supervised contrast. We trained the network on the
ACDC dataset for 400 epochs with a batch size of 8, using an Adam [22] optimizer with
β1 = 0.9, β2 = 0.99. We set the initial learning rate and the weight decay to 4× 10−4 and
1× 10−4, respectively, and used a cosine annealing scheduler to decay the learning rate to
1×10−6 in the last epoch.

4.3 Evaluation

Quantitative results. We summarize the semantic segmentation results in Table 2, where
there are 1.34%p and 1.33%p increases in mIoU from the baseline for the ResNet-18 and
-34 backbones, respectively, for our method. Our proposed method generally outperforms
in mIoU under each of the four adverse conditions, relative to the other experimented single
and double contrasts. Our method is particularly effective for the harder conditions, namely
nighttime, rain and snow, where we exploit the semantic correlations in the embeddings
across the pixels of different conditions owing to the doubly contrastive objective. We remark
that the difficulties in predictions in nighttime and rain stem from a significant number of
darker pixels obstructing clear view of objects in the driving area and rain droplets distorting
the camera view and the texture of objects at far distances, respectively. The performance
under fog is not relatively lower than in clear weather due to low fog density. Further, we
highlight that our experiments are accompanied with a batch size of 8 under a more practical
training scenario. We expect higher performance gain with a batch size of 2048 as suggested
in common contrastive learning works [20].

With pre-training on clear weather images, there are 0.86%p and 1.80%p improvement
in mIoU for the ResNet-18 and -34 backbones for our method, respectively, after fine-tuning
on the adverse weather images. Note that the experiment (f) achieves as high overall mIoU
as the experiment (g), as well as in each weather-specific mIoU score. While our method
has minor improvements for all conditions except fog with the ResNet-18, we observed
noticeable increases with the ResNet-18 backbones.
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Table 2: Semantic segmentation performance by adverse weather conditions using SwiftNet.
Bb denotes backbone. The best results in boldface and the second best in underline.

Bb Exp. Loss (∗: single contrast, †: double contrasts) mIoU (%) Fog Nighttime Rain Snow

R
es

N
et

-1
8

(a) Cross Entropy 62.63 68.95 45.71 63.32 65.43
(b) Focal (baseline) 64.04 71.59 47.84 63.90 65.57
(c) +Pixel-level Supervised Contrast only∗ 63.79 69.76 47.26 63.05 68.34
(d) +Self-supervised Contrast only∗ 63.91 71.83 48.02 62.24 68.35
(e) +Image-level Supervised Contrast only∗ 63.62 69.66 47.65 63.28 67.10
(f) +Self-supervised and Pixel-level Supervised Contrasts† 65.07 72.45 48.57 63.95 68.31
(g) +Image- and Pixel-level Supervised Contrasts† (Ours) 65.38 67.94 48.56 65.38 68.64

R
es

N
et

-3
4

(a) Cross Entropy 65.02 73.85 47.11 65.20 66.94
(b) Focal (baseline) 67.00 74.44 49.38 67.29 70.64
(c) +Pixel-level Supervised Contrast only∗ 66.60 72.49 49.84 65.55 69.06
(d) +Self-supervised Contrast only∗ 68.09 76.99 50.14 66.45 69.56
(e) +Image-level Supervised Contrast only∗ 68.07 75.12 50.76 66.78 69.33
(f) +Self-supervised and Pixel-level Supervised Contrasts† 67.02 72.06 50.12 65.86 70.83
(g) +Image- and Pixel-level Supervised Contrasts† (Ours) 68.33 75.19 51.21 67.37 71.19

Bb Exp. Loss (w/ pre-training with clear weather) mIoU (%) Fog Nighttime Rain Snow

R
es

N
et

-1
8 - Focal (Cityscapes) 73.16 N/A (Clear weather only)

(a) Cross Entropy 64.40 71.88 47.09 65.59 66.66
(b) Focal (baseline) 65.49 73.43 47.67 64.77 68.35
(f) +Self-supervised and Pixel-level Supervised Contrasts† 66.97 74.05 49.10 67.85 69.69
(g) +Image- and Pixel-level Supervised Contrasts (Ours)† 66.24 75.38 48.82 65.79 68.42

R
es

N
et

-3
4 - Focal (Cityscapes) 73.80 N/A (Clear weather only)

(a) Cross Entropy 68.38 75.99 49.70 67.92 71.49
(b) Focal (baseline) 69.46 76.94 50.28 69.78 71.69
(f) +Self-supervised and Pixel-level Supervised Contrasts† 70.06 76.11 50.47 70.68 72.89
(g) +Image- and Pixel-level Supervised Contrasts (Ours)† 70.13 76.31 53.59 70.50 71.89

Qualitative results. As shown in Fig. 2, our doubly contrastive method corrects false
positive predictions from the focal loss (baseline) case, and allows to predict objects of a
relatively large size more consistently. For instance, it removes noisy predictions on road,
removes the fuzzy boundary between road and sidewalk, and fills in mis-classified pixels
with the correct label for somewhat noisily predicted objects. Specifically in rain, it recov-
ers a pole that seemed nonexistent in the baseline and corrects the pixels mis-classified as
sidewalk to road. The effect of our method is more apparent when there is a region with a
majority of pixels belonging to a single class, yet there remains mis-classified or noisy pixels
in part.
Feature visualization. For an in-depth analysis of the learned features, we provide the
class- and pixel-wise t-SNE visualizations for the baseline and our method in Fig. 3. For
the class-wise features categorized into the four weather conditions, our doubly contrastive
method better discriminates images of the fog and night classes from images of the other
two. Images of these two categories are more clustered and densely located by themselves.

For pixel-wise features, we opted to visualize for the first batch of pixel-wise feature em-
beddings due to a memory contraint, where we observed that the features are more densely
populated, thereby appearing darker in each respective color. This insinuates pixels belong-
ing to the same class are more compactly located in the feature space. While grouping
patterns seem more apparent for the baseline, our combination of image- and pixel-level su-
pervised contrastive objectives finds a good balance in the feature space that yields higher
semantic segmentation scores.
Ablation studies. We examine the effect of different feature extractors as well as the
fine vs. coarse feature granularity as noted in Fig. 1. Table 3 presents the results and the
corresponding computational costs when the SwiftNet feature extractor is replaced by that of
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Figure 2: Two samples of semantic segmentation prediction results for each of the four
weather conditions: fog, night, rain and snow (1 → 4). Please zoom in to see details.

ENet and DeepLabV3+ (ResNet-50 backbone). While our method is effective with SwiftNet,
it is not as effective as with ENet or with DeepLabV3+. We infer that this is due to the single-
scale encoder for ENet, and the ASPP module for DeepLabV3+. While SwiftNet draws
multi-resolution features sequentially from the previous scale features, DeepLabV3+ applies
convolutions with different kernel sizes and pools altogether in one step. We applied our
image-level contrast to the ENet features before upsampling and DeepLabV3+ features after
ASPP followed by 1×1 convolution, respectively. In terms of memory, ENet is the smallest
in size, yet it requires heavy memory space and is thus relatively slower. DeepLabV3+, on
the other hand, is large in size even with ResNet-50 instead of its proposed Xception-71.
Replacing the fine features with the coarse in SwiftNet yields a drop of 3.75%p in mIoU
for our method since fine features contain the fused output from the features from multi-
resolution encoder blocks that provide geometrically richer contexts than the coarse.
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Figure 3: t-SNE visualizations for the trained features using SwiftNet (ResNet-18). Top row:
focal loss only (baseline). Bottom row: Ours. Columns from left to right: weather class-wise
features, and pixel-wise features for fog, nighttime, rain and snow, in order. Void class is not
shown. Please zoom in to see details.

Table 3: Ablation study: semantic segmentation performance with different models and
coarse features (2048×1024 resolution). Coarse features are marked with †; otherwise fine.

Model (Encoder type) Exp. mIoU (%) Fog Nighttime Rain Snow GFLOPs Params (M) RTX 3080 Mobile
Time (ms) FPS

(a) 45.22 48.10 36.31 44.46 47.53

1.40 0.35 31 32.3ENet [29] (b) 50.45 55.14 38.70 49.44 53.44
(Single-scale) (f) 50.78 55.91 38.96 50.88 52.39

(g) 49.32 53.64 37.85 49.86 51.17

(a) 62.63 68.95 45.71 63.32 65.43

8.04 12.04 15 66.7

(b) 64.04 71.59 47.84 63.90 65.57
SwiftNet (ResNet-18) [28] (f) 65.07 72.45 48.57 63.95 68.31
(Multi-scale pyramidal) (g) 65.38 67.94 48.56 65.38 68.64

(f)† 60.62 65.84 45.35 61.20 64.79
(g)† 61.66 67.86 46.07 62.10 64.84

(a) 65.02 73.85 47.11 65.20 66.94

14.40 22.15 26 38.5SwiftNet (ResNet-34) [28] (b) 67.00 74.44 49.38 67.29 70.64
(Multi-scale pyramidal) (f) 67.02 72.06 50.12 65.86 70.83

(g) 68.33 75.19 51.21 67.37 71.19

(a) 69.69 73.60 51.45 72.18 72.29

29.88 39.76 14 71.4DeepLabV3+ (ResNet-50) [7] (b) 70.07 75.18 52.49 73.22 71.50
(ASPP) (f) 69.22 73.95 50.54 70.42 73.24

(g) 69.04 74.54 51.20 70.70 71.83

5 Conclusion

We proposed an end-to-end doubly contrastive learning approach to semantic segmentation
for self-driving under adverse weather. Our doubly contrastive method exploits image-level
labels to semantically correlate RGB images taken under various weather conditions and
pixel-level labels to obtain more semantically meaningful representations. In our method,
the two supervised contrasts complement each other to effectively improve the performance
of a lightweight model, without a need for pre-training or a memory bank to associate images
across various weather conditions for global consistency. We hope this sheds further light on
contrastive learning approaches for real-time deployment of self-driving systems.
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