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alan.lukezic@fri.uni-lj.si

Žiga Trojer∗1

ziga.trojer20@gmail.com
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Abstract
Visual object tracking has focused predominantly on opaque objects, while trans-

parent object tracking received very little attention. Motivated by the uniqueness of
transparent objects in that their appearance is directly affected by the background, the
first dedicated evaluation dataset has emerged recently. We contribute to this effort by
proposing the first transparent object tracking training dataset Trans2k that consists of
over 2k sequences with 104,343 images overall, annotated by bounding boxes and seg-
mentation masks. Noting that transparent objects can be realistically rendered by modern
renderers, we quantify domain-specific attributes and render the dataset containing visual
attributes and tracking situations not covered in the existing object training datasets. We
observe a consistent performance boost (up to 16%) across a diverse set of modern track-
ing architectures when trained using Trans2k, and show insights not previously possible
due to the lack of appropriate training sets. The dataset and the rendering engine will be
publicly released to unlock the power of modern learning-based trackers and foster new
designs in transparent object tracking.

1 Introduction
Visual object tracking is a fundamental computer vision problem that emerges in a broad
range of downstream applications such as human-computer interaction, surveillance, au-
tonomous robotics and video editing, to name a few. The substantial advances observed in
the last decade have been primarily driven by emergence of challenging evaluation datasets [14,
21, 26, 48] and diverse training sets [21, 38, 42] that enabled end-to-end learning of modern
deep tracking architectures. While most benchmarks addressed opaque objects, very little
attention has been dedicated to tracking of transparent objects. These are unique in that they
are often reflective and their appearance is affected by the background texture, thus reducing
the reliability of the deep features trained for opaque objects.
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Figure 1: Trackers trained on opaque object training sets fail due to specifics of transparent
object appearance dynamics (upper row). After training with the proposed Trans2k, their
performance remarkably improves (bottom row).

Recently, the TOTB benchmark [15] was proposed to facilitate research in transparent
object tracking. The benchmark results show that classical trackers underperform on trans-
parent objects and that, contrary to opaque object tracking and to many other vision prob-
lems, shallow backbones outperform the deep ones. However, it is crucial to note that the
results were obtained without re-training the state-of-the-art trackers on representative train-
ing sets, which opens the question whether these observations are not just a consequence of
the domain shift rather than an inherent property of shallow and deep modern learning-based
tracking architectures. There is thus a pressing need for a high quality transparent object
training video dataset to answer this question and to potentially unlock the power of deep
learning trackers, as well as to facilitate in-depth analysis and foster further research.

Construction of the training dataset presents many challenges. First, the training set
should be large, diverse, and focus on visual attributes and challenging situations specific for
transparent objects, which are not already covered in the opaque tracking datasets. Second,
the targets should be accurately annotated. Presented with these challenges, various sequence
selection and annotation protocols have emerged [15, 21, 25, 27]. In related fields like 6DoF
estimation [17, 18] and scene parsing [13, 39, 53], image rendering has been applied to avoid
the aforementioned issues. However, the realism of rendered general objects remains limited,
reducing the training potential. We note that transparent objects are unique in that, contrary
to their opaque counterparts, non-textured transparent materials may be faithfully rendered
by modern renderers [12]. Thus highly realistic sequences with precisely specified visual
attributes and pixel-level ground truth free of subjective annotation bias can be generated.

We propose the first transparent object tracking training dataset Trans2k. To maximise
its utility, a protocol is designed that identifies challenging visual attributes and tracking
situations not covered in existing datasets. The identified attribute ranges are then used in
rendering over 2k sequences with 104,343 images overall.

A set of trackers representing the major modern deep learning approaches is evaluated
on [15]. We report a consistent performance boost (up to 16%) across all architectures when
trained with Trans2k. Contrary to [15], we show that deep backbones outperform shallow
ones on transparent object tracking, which is consistent with observations in opaque tracking.
We see transformers as the most promising approach and identify the visual attributes that
future architectural designs should address to make significant progress in performance.
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In summary, our contributions are: (i) Trans2k, the first training dataset for transpar-
ent object tracking that unlocks the power of deep trainable trackers and allows training
bounding box or segmentation trackers, (ii) a complementary analysis on [15] with new
findings indicating future research directions. The dataset and the sequence generation
engine will be made publicly available. The paper reports two surprising observations:
first, that transparent object tracking results are comparable to opaque object tracking for
state-of-the-art trackers trained with Trans2k, and second, that training with Trans2k leads
to substantial performance boost on transparent objects at minimal reduction on opaque
objects. The dataset, rendering engine and instructions how to use it are available here:
https://github.com/trojerz/Trans2k

2 Related Work
Object tracking. Deep trackers excel across various benchmarks [14, 15, 21, 28, 35, 48]
compared to their hand-crafted counterparts. Initially, pre-trained general backbones were
used for feature extraction, primarily by the discriminative correlation filter (DCF) track-
ers [2, 7, 8, 9, 32], which learned a discriminative localization models online during track-
ing. Later, backbone end-to-end training techniques that maximize DCF localization were
proposed [45]. Most recently, the DCF optimization has been introduced as part of the deep
network. Milestone representatives were proposed in [10, 11], which also proposed a post-
processing network for bounding box refinement that accounted for target aspect changes. In
parallel, siamese trackers have been explored and grown into a major tracker design branch.
The seminal work [1] trained AlexNet-based network [29] such that localization accuracy
is maximized simply by correlation between a template and search region in feature space.
These trackers afford fast processing since no training is required during tracking. Siamese
trackers were extended by anchor-based region proposal networks [30, 31] and recently an
anchor-free extension has been proposed [6] with improved localization performance. Draw-
ing on advances in object detection [3], transformer-based trackers have recently emerged
[5, 46, 52]. These are the current state-of-the-art, and computationally efficient with remark-
able real-time performance [28].

Benchmarks. The developments in visual object tracking have been facilitated by in-
troduction of benchmarks. The first widely-used benchmark [48, 49] proposed a dataset
and evaluation protocol that allowed standardised comparsion of trackers. Later, the VOT
initiative explored dataset construction as well as performance evaluation protocols for ef-
ficient in-depth analysis [25, 26, 27]. Further improvements were made in the subsequent
yearly challenges, e.g., [28, 35]. With advent of deep learning, tracking training sets have
emerged. [38] constructed a huge training set from public video repository and applied
a semi-automatic annotation. Recently, [21] presented ten thousand annotated video se-
quences, divided into a large training and a smaller evaluation set. Concurrently, a long-term
tracking benchmark [14] with fifteen pre-defined categories, containing training and test set
was proposed. All these benchmarks focus on opaque objects, while recently as transparent
object tracking evaluation dataset [15] has been proposed. However, training datasets for
transparent object tracking have not been proposed.

Use of synthesis. Rendering has been previously considered in computer vision to avoid
costly manual dataset acquisition. In [24, 40], synthetic data was generated by a video game
engine, which provided an unlimited amount of annotated training data for various computer
vision tasks. A rendered dataset of urban scenes, Synthia [41], was shown to substantially
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improve the trained deep models for semantic segmentation. A similar dataset [47] was
proposed for training and evaluation of scene parsing networks. A fine-grained vegetation
and terrain dataset [36] was recently proposed for training drivable surfaces and natural ob-
stacles detection networks in outdoor scenes. [44] showed that foreground and background
should be treated differently when training segmentation on synthetic images. The benefits
of using mixed real and synthetic 6DoF training data has been recently shown in [19]. The
major 6DoF object detection challenge [20] thus provides a combination of real and syn-
thetic images for training as well as evaluation. Synthesis has been used in the UAV123
tracking benchmark [37] in which eight of the sequences are rendered by a game engine. A
rendering approach was used in [4] to parameterize camera motion for fine-grained tracker
performance analysis. However, using synthetic data for training in visual tracking remains
unexplored.

Transparent objects. Highlighting the difference from opaque counterparts, transparent
objects have been explored in computer vision in various tasks. Recognition of transparent
objects was studied in [16, 34], while 3D shape estimation and reconstruction of transparent
objects on RGB-D images was proposed in [23, 43]. Segmentation of transparent objects has
been studied in [22, 51], while a benchmark was proposed in [50]. All these works consider
single-image tasks and little attention has been dedicated to videos. In fact, a transparent
object tracking benchmark [15] has been proposed only recently and reported a performance
gap between transparent and opaque object tracking. However, due to the lack of a dedicated
training dataset, the gap source remains unclear.

3 Trans2k dataset
Transparent objects, which are often reflective and glass-like, can be rendered with a high
level of realism by the modern photo-realistic rendering engines [12]. In our approach, we
first identify and parameterize the sequence attributes specific to transparent objects (Sec-
tion 3.1). A BlenderProc-based sequence generator is implemented that enables parameter-
ized sequence rendering. Attribute levels useful for learning are identified empirically and
the final training dataset is generated (Section 3.2).

3.1 Parametrization of sequence attributes
The dataset should reflect the diversity of visual attributes typical for transparent object track-
ing scenes for efficient learning. After carefully examining various videos of transparent and
opaque objects, the following attributes were identified (Figure 2).
Scene background. Since background affects the transparent object appearance, a high
background diversity is required in training. We ensure this by randomly sampling videos
from GoT10k [21] training set and use them as backgrounds over which the transparent
object is rendered.
Object types. 3D models of 25 object types from open source online repositories are se-
lected with several instances of the same type. The set was chosen such to cover a range of
nontrivial as well as smooth shapes, with some objects rendered with empty and some with
full volume. This amounts to 148 object instances.
Target motion. To increase the object-background appearance diversity, the objects are
moving in the videos. The motion trajectory is generated by a cubic Hermite spline spanned
by four uniformly sampled points. The motion dynamics is not critical in training, since
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Figure 2: Trans2k attribute levels for "Transparency", "Motion blur", "Partial occlusion",
"Distractor" (binary), "Target motion" (four control points) and "Rotation".

deep models are typically trained on pairs of image patches cropped at target position. Thus
a constant velocity is applied.
Distractors. In realistic environments, the target may be surrounded by other visually similar
transparent objects (e.g., glasses on a table), which act as distractors. We thus render an
additional transparent object following the target object. The distractor object is from a
different type to keep the appearance-based localization learning task feasible.
Transparency. The level of transparency crucially affects the target appearance. We thus
identify four levels ranging from clearly visible to nearly invisible.
Motion blur. Fast motions, depending on the aperture speed, result in various levels of
blurring. We identify four levels of blur intensity, ranging from no blurring to extreme
blurriness.
Partial occlusion. Objects are commonly occluded by other objects in practical situations
(e.g., handling of the target). We thus simulate partial occlusions by rendering coloured
stripe pattern moving across the video frame. The stripe width is fixed, while the occlusion
intensity is simulated by the number of stripes (0, 7, 11, 20) per image, i.e., from zero to
severe occlusion.
Rotation. To present realistic object appearance change, the object rotates in 3D in addition
to position change. The rotation dynamics is specified by the angular velocity along each
axis, which is kept constant throughout the sequence. We identify four rotation speed levels,
(0, 1.3, 5.4, 10.6) degrees per frame, thus ranging from no rotation to fast rotation.

3.2 Attribute selection and dataset generation
To maximize the dataset application utility, the sequences should be complementary to exist-
ing datasets from tracking perspective and should focus on attributes that the learning-based
trackers cannot already learn from opaque object tracking training sets. An empirical study
was designed to determine which intensity levels of the attributes (i) transparency, (ii) partial
occlusion, (iii) rotation and (iv) motion blur should be considered in the final dataset. The
intensity levels are visualized in Figure 2.

Seven state-of-the-art deep learning trackers pretrained on opaque object tracking datasets
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Stark SiamBAN DiMP D3S SiamRPN++ TransATOM ATOM

Figure 3: Average IoU of trackers reflect the difficulty level of individual attribute inten-
sity. The blue shaded columns show performance of trackers pre-trained on opaque datasets,
while the gray shaded column shows performance after training with Trans2k.

(see Section 4 for details) that cover the major current trends in tracking were selected. The
difficulty level of individual attribute is quantified as the overall performance of these track-
ers on test sequences rendered with that attribute. Specifically, for each attribute level, five
sequences were sampled from Got10K [21] training set and used as backgrounds in the ren-
dered sequences. The same background sequences with same object, traveling over the same
trajectory are used with all attributes to ensure consistent evaluation. This resulted in 80 test
sequences (4 attributes × 4 levels × 5 variations).

The results are shown in Figure 3. We observe that most of the attribute levels result
in performance reduction and are thus kept as relevant in our final dataset, except from
two at which the trackers score quite high. The lowest transparency level and zero rotation
appear to be well addressed by the opaque object training sets, thus we decide not to include
them in our dataset for better use of its capacity. The following parameters are thus applied
when rendering Trans2k. The GoT10k training set sequences are sampled at random and
at most once. All object types are sampled with equal probability. The transparency levels
(excluding the lowest level) are sampled with equal probability. Blur presence in a sequence
is sampled with 0.15 probability, with blur levels sampled uniformly. Occlusion presence is
sampled with 0.2 probability, while occlusion levels are sampled uniformly. Rotation level is
uniformly sampled. The resulting training dataset Trans2k thus contains 2,039 challenging
sequences and 104,343 frames in total.

Since the sequences are rendered, the ground truth can be exactly computed. We pro-
vide the ground truth in two standard forms, the widely accepted target enclosing axis-
aligned bounding-box and the segmentation mask to cater to the emerging segmentation
trackers [35]. The ground truths for distractors are generated as well. Trans2k is thus the
first dataset with per-frame distractor annotation to facilitate development of future learning-
based methods that could exploit this.

4 Experiments

4.1 Selected trackers and training setup
We selected state-of-the-art learning-based trackers that cover the major trends in modern
architecture designs for validating Trans2k: (i) two siamese trackers SiamRPN++ [31] and
SiamBAN [6], (ii) two deep correlation filter trackers ATOM [10] and DiMP [11], (iii) the
recent state-of-the-art transparent object tracker TransATOM [15], and (iv) a transfomer-
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Figure 4: Trackers evaluated on TOTB dataset shown in precision and success plots. Track-
ers trained with Trans2k are denoted by a star (*). The right graph shows absolute im-
provements in tracking performance measured by the AUC measure after training with the
proposed Trans2k.

based tracker STARK [52]. These trackers localize the target by a bounding box. To account
for the recent trend in localization by per-pixel segmentation [35], we include (v) the recent
state-of-the-art segmentation-based tracker D3S [33].

During training, the trackers were initialized by the pre-trained weights provided by their
authors, while all the training details were the same as in the original implementations. The
trackers were trained for 50 epochs with 10000 training samples per epoch. Since Trans2k
was designed as a complementary dataset covering situations not present in existing datasets,
the training considers samples from Trans2k as well as opaque object sequences. In particu-
lar, we merged the opaque training datasets GOT10k [21], LaSoT [14] and TrackingNet [38]
into a single dataset, abbreviated as opaque object training dataset (OTD). A training batch
is then constructed by sampling from Trans2k and OTD with 5:3 ratio.

4.2 Validation of Trans2k
We first validated the contribution of Trans2k by measuring performance of trackers on the
recent transparent object tracking benchmark TOTB [15]. Following the regime described
in Section 4.1 the selection of seven state-of-the-art trackers was trained using Trans2k.
Their performance was then compared to their original performance, i.e., when trained only
with opaque object tracking sequences. Thus any change in performance is contributed only
by the training dataset. The trackers were evaluated by the standard one-pass evaluation
protocol (OPE) that quantifies the performance by AUC and center error measures on success
and precision plots. For more information on the protocol, please refer to [15, 48].

The results are shown in Figure 4. The performance of all trackers substantially improved
when trained using Trans2k. The performance gains are at a level usually expected for a clear
methodological improvement. Recently, TransATOM [15], a transparent object tracking ex-
tension of ATOM [10], was proposed, which outperformed ATOM by 2.1%. Without any
methodological modification and only training with Trans2k, ATOM outperforms this ex-
tension by 1.7%. Nevertheless, TransATOM gains 3.3% when trained with Trans2k. The
largest performance boost is achieved by DiMP, which improves by over 16% and scores
as the second-best among all the tested trackers. Consistent with the observation on opaque
object tracking benchmarks, the transformer-based tracker STARK achieves the best per-
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formance. Note that even without training with Trans2k, STARK surpasses all trackers,
but when trained with Trans2k, an additional healthy 2.5% performance boost is observed.
Since Trans2k provides segmentation ground truths in addition to bounding boxes, it boosts
the segmentation-based tracker D3S [33] as well. The version trained with Trans2k gains a
remarkable 6% in performance.

4.3 Re-evaluating the significance of backbone depth

The recent benchmark [15] reported a remarkable case that, specific to transparent object
tracking, shallow backbones outperform deep ones, which conflicts common observations in
opaque object tracking. Since [15] could only analyze the performance with using opaque
tracking training sets, we re-evaluate this claim but in the context of using a transparent
object tracking training set. We select three deep discriminative correlation filters DiMP [11],
ATOM [10] and TransATOM [15] and study their performance with a shallow (ResNet18)
and a deep (ResNet50) backbone when trained with and without transparent objects.

Results in Table 1 reveal that ATOM and TransATOM with shallow backbones indeed
outperform their deep backbone counterparts. In contrast, DiMP with deep backbone sub-
stantially outperforms the shallow backbone counterpart. This apparent discrepancy comes
from the different designs of ATOM and DiMP. While ATOM uses a pre-trained backbone
and allows training of only post-processing steps, DiMP trains the backbone as well. The
ATOM’s apparent preference of shallow backbones comes from the fact that shallow back-
bones generalize better to transparent objects when trained only with opaque training exam-
ples. To verify this, we replace ATOM’s and TransATOM’s backbone by those trained by
DiMP. Both trackers improve their performance with deep backbones trained on transparent
objects compared to shallow ones. Interestingly, their deep backbone variants reach per-
formance near DiMP’s and their performance difference becomes negligible – thus properly
trained vanilla ATOM should be preferred to its more complex extension TransATOM. The
experiments thus reveal, that deep backbones in fact lead to substantial improvements over
shallow counterparts, if trained on the transparent object dataset.

Table 1: Tracking performance (AUC) of three trackers using different backbones. Opaque
indicates training with only OTD, + Trans2k to using the transparent dataset as well. Pre-
trained ResNet18 and ResNet50 backbones are denoted by R18 and R50, respectively, while
their versions trained by DiMP are denoted by D18 and D50.

DiMP ATOM TransATOM
D18 D50 R18 R50 D18 D50 R18 R50 D18 D50

Opaque 0.552 0.600 0.618 0.608 0.551 0.588 0.631 0.608 0.582 0.603
+ Trans2k 0.613 0.699 0.642 0.648 0.629 0.695 0.664 0.664 0.647 0.697

4.4 How does Trans2k affect opaque object tracking?

To quantify how much the trackers trained with Trans2k lose in generalization to opaque
objects, we evaluate the trackers on the GOT10k [21] validation dataset. Table 2 shows
results for trackers trained only with OTD and with added Trans2k (as described in Sec-
tion 4.1). The tracking performance on opaque objects slightly drops, but still remains high.
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This result suggests that, while substantial boosts are observed in transparent object tracking
(Figure 4) with the use of Trans2k, the generalization to opaque objects is not lost.

Table 2: Tracking performance (AUC) on the opaque tracking dataset GoT-10k val. Opaque
– training with only OTD, + Trans2k – using the transparent dataset as well.

STARK DiMP SiamBAN D3S TransATOM SiamRPN ATOM
Opaque 0.777 0.706 0.679 0.676 0.662 0.656 0.650
+ Trans2k 0.752 0.696 0.676 0.663 0.650 0.656 0.650

4.5 The role of using opaque objects in training

To further study the impact of the training set content from perspective of the presence of
opaque and transparent objects, the training sets were varied. We selected two well-known
state-of-the-art trackers that performed well in our previous experiments, yet could be trained
sufficiently fast. The deep discriminative correlation filter DiMP [11] and the siamese tracker
SiamBAN [6] were selected. The original versions trained by the authors were evaluated on
TOTB [15] along with the versions re-trained using the following variations of the training
set: (i) only Trans2k without OTD, (ii) only OTD, (iii) Trans2k+OTD. In experiments (i),
(ii) and (iii) the tracker networks are initialized by their pre-trained models provided by the
authors. Thus an additonal experiment (iv) is performed where the trackers were trained
from scratch using the dataset from (iii). The trained trackers were evaluated on TOTB [15].

Results in Table 3 show that using only Trans2k reduces the tracking performance com-
pared to training on opaque objects training datasets. A closer look revealed that the trackers
trained only with Trans2k tend to focus on transparent objects in general rather than local-
izing the target, which was reflected in tracker often jumping to nearby transparent objects
when multiple such objects were close to the target. Training with OTD when initialized
with original tracker parameters does not bring improvements in general (DiMP performance
drops slightly, while that of SiamBAN increases a bit). However, when using transparent as
well as opaque objects in the training set, the performance improves substantially. When
training from scratch, the performance of both trackers drops compared to the version ini-
tialized with pre-trained networks. This suggests pre-training is beneficial for both trackers,
but particularly for SiamBAN as it requires learning more parameters than DiMP.

Table 3: Comparison of different training setups for SiamBAN and DiMP. Performance of
pre-trained trackers is indicated by orig., while scr. indicates training from scratch.

orig. Trans2k OTD OTD+Trans2k scr.
DiMP 0.600 0.554 0.584 0.699 0.667
SiamBAN 0.656 0.650 0.658 0.680 0.649

5 Conclusion
The first transparent object tracking training dataset Trans2k is proposed. The fact that trans-
parent objects can be sufficiently realistically rendered by modern renderers is exploited. Us-
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ing a specialized protocol, we identified visual attributes not covered well in existing datasets
and rendered a dataset with over 2k training sequences containing transparent objects.

Trans2k was validated on the recent transparent object tracking benchmark TOTB [48].
Training with Trans2k improves performance at levels usually observed in fundamental
methodological advancements in tracking algorithms. This behavior is observed over a wide
range of tracking methodologies. Analysis shows that significant performance gains in trans-
parent object tracking come at a minor performance loss in opaque object tracking, which
indicates to excellent generalization of modern trackers. In contrast to the findings in [15],
experiments show that trackers benefit from training deeper backbones on transparent ob-
jects. Additional experiments showed the benefits of using transparent as well as opaque
objects in the training dataset. Overall, the best performance was observed with transform-
ers.

While the field of transparent object tracking has recently obtained an excellent test
set [15], the main ingredient crucial for advancements, i.e., a curated training set was miss-
ing. Trans2k fills this void and will enable future development of new learnable modules
specifically addressing the challenges in transparent object tracking, thus fully unlocking the
power of modern deep learning trackers on this scientifically interesting domain. Our se-
quence generator engine will be released along with Trans2k. We envision that the engine
will allow inovative learning modes in which the sequences with specific challenges can be
generated on demand to specialize the trackers to niche tasks or to improve their overall per-
formance. In addition, the rendering engine could be used to generate training data for 6-DoF
video pose estimation, thus benefiting research beyond 2D transparent object tracking.
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