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Abstract

One of the main assumptions behind Structure-from-Motion is that of a rigid scene,
i.e., the scene is static or composed of a single moving object. The rigidity constraint
– typically encoded in the Kruppa equations – is at the core of self-calibration and en-
ables Euclidean upgrading from uncalibrated images. In this work, we show how it is
possible to improve self-calibration by considering a dynamic scene composed of mul-
tiple moving rigid objects. The rationale of our solution is that each rigid motion pro-
vides a useful constraint that can be used to better estimate the intrinsics of the cam-
era. Specifically, we introduce a self-calibration method for a single camera that ex-
ploits motion segmentation to identify rigid motions. Our solution capitalizes on all
the available epipolar relations to robustly initialize the camera parameters, which are
then optimized through nonlinear refinement. Experiments on real-world data show
that our approach is comparable to state-of-the-art self-calibration methods when the
scene is static and improves performance in the case of dynamic scenes. The code and
a dataset with images of dynamic scenes and ground truth intrinsics are available at
https://github.com/andreadalcin/MultiBodySelfCalibration.

1 Introduction
Nowadays, Structure-from-Motion (SfM) [2, 12, 15, 44] is a mature technology that pro-
duces 3D reconstructions at a quality level that meets industrial standards. SfM algorithms
work assuming that the scene is static. However, physical reality is far from static, as we live
in a dynamic environment where multiple objects move independently. On the one hand,
multiple motions challenge classical single-body SfM algorithms [24], as all motions but
the dominant one act as outliers and strain the reconstruction. On the other hand, multiple
motions provide information [7] that, when properly exploited, better constrain the recon-
struction. In this work, we address camera self-calibration [6, 8], namely the problem of
estimating the internal camera parameters from a collection of sparse images of a scene.
This task is a key component in SfM pipelines. We demonstrate that self-calibration benefits
from multiple motions in a dynamic scene and introduce a novel self-calibration algorithm
that capitalizes on this information under the assumption that the motions are rigid and that
the camera parameters remain fixed during the acquisition.
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We address multi-body self-calibration as follows. We are given n images I = {I1, . . . , In}
of a 3D scene acquired by a projective camera from n different poses (Ri, ti). The camera
intrinsics K are fixed and defined as:

K=

 fx s u
0 fy v
0 0 1

 (1)

where fx and fy are the focal lengths, (u0,v0) the principal point and s the camera skew.
As usual, we assume zero skew (s = 0) and do not account for radial distortion, although
it is possible to rectify images beforehand using existing self-calibration methods, e.g., via
[35]. We consider 3D scenes that contain m ≥ 1 independently moving rigid bodies B =
{β1, . . . ,βm}. When m = 1, the scene is static; if m > 1 we say the scene is dynamic. We
always refer to rigid motions and do not consider non-rigid scene deformations. Our goal is
to recover the intrinsic parameters K given only the collection of images I.

In practice, self-calibration is a difficult problem, as it involves solving a system of non-
linear polynomial equations. This is hindered by noise and outliers, which unavoidably affect
image correspondences, and by degenerate motions that yield indeterminate solutions of the
system. Our intuition is to exploit multiple motions of bodies B to constrain self-calibration
better, as more information can be inferred from images in I when the scene is dynamic
rather than static. Unfortunately, the more individual motions, the fewer inliers support them,
making fundamental matrices estimation more susceptible to noise and outliers. Moreover,
moving objects are typically small compared to the camera field of view, and may yield
degenerate 3D motions that do not provide valid constraints. Thus, it is not straightforward
to apply self-calibration to dynamic scenes, as robustness must be considered.

Contributions To the best of our knowledge, we are the first to introduce a practical multi-
body self-calibration method for dynamic scenes that deals with noise and outliers. The
major contributions of this work can be summarized as follows:
i) Our approach capitalizes on all the rigid motions B in the dynamic scene to better con-
strain self-calibration, as opposed to classical approaches that treat non-dominant motions as
outliers. Thus, self-calibration can be attained from fewer images, as theorized in [7].
ii) We introduce a Motion Segmentation tailored specifically to the problem. We exploit the
rigidity constraints to recover fundamental matrices describing rigid motions and, at the same
time, estimate the focal length. Instead, classical uncalibrated segmentation approaches are
limited to fundamental matrices.
iii) Camera parameters are estimated by a non-linear optimization routine which we augment
with multiple robustness layers. Specifically, we focus on the robustness of the initialization
and on numerical stability.

2 Related Work
Since the introduction of self-calibration by [6], several methods have attained compelling
results for static scenes. Early methods [13, 20, 41] have laid down the foundations to
directly estimate the camera intrinsics by exploring both algebraic constraints (the Kruppa
equations [6, 16, 19]) and geometric ones (Dual Image of Absolute Conic). As an alternative,
stratified methods upgrade a projective 3D reconstruction to Euclidean [4, 26]. Recently,
end-to-end Deep Learning approaches [3, 18, 21, 28] have been introduced to infer the focal
length and the radial distortion of a camera from a single image.
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Figure 1: A graphical overview of the proposed multi-body self-calibration pipeline. The main steps
of the algorithm are depicted (white boxes), as well as their inputs and outputs (grey boxes).

Self-calibration usually requires solving a system of non-linear polynomials. At a high
level, we identify two streams of work. One line of research is rooted in numerical algebraic
geometry and leverages homotopy continuation [43] or Gröbner basis. However, these meth-
ods suffer from high computational costs and are very sensitive to noise. A recent work [25]
employs a consensus maximization [29] coupled with Branch-and-Bound to robustly sample
algebraic varieties defined by the Kruppa equations and the Modulus constraint.

The second line of research tackles self-calibration as the optimization of a non-linear
cost function [20, 23] derived from the rigidity of the scene. Our solution belongs to this
category. Several strategies have been proposed to deal with noise or outliers from incorrect
image matches and to limit the impact of degenerate motions, which make self-calibration
ill-conditioned. For instance, it has been proposed to weigh the Kruppa constraints to reduce
the influence of outlying fundamentals [5, 19, 23]. In [27], the authors discard image pairs
that give rise to critical motions. Robustness is also pursued in [10], where interval analysis
is introduced, and in [30], where a randomized multi-start approach is presented. A good
initialization is crucial for the success of these approaches.

All the aforementioned works assume the 3D scene to be static. Self-calibration in dy-
namic scenes has not been explored significantly, as, in general, multi-body SfM [24] has not
reached the maturity of its single-body counterpart. Practical 3D reconstruction pipelines
that operate under this realistic assumption and provide accurate results are still missing,
despite attempts in this direction, e.g., [14]. Most recently, the problem of multi-body self-
calibration has never been addressed. While more challenging, the multi-body scenario of-
fers advantages that have been somewhat overlooked in the literature. A notable exception
is [7], where Fitzgibbon and Zisserman show that the multi-body analysis allows for a Eu-
clidean reconstruction in cases that are under-constrained for a static scene. However, the
analysis is mainly theoretical and does not address robustness, as we did in this work.

3 Method
We propose a self-calibration method that robustly estimates the intrinsic parameters of a
camera from a set of images depicting a scene containing multiple independently moving
rigid bodies. Our method is structured in three steps (Fig. 1) that work together to achieve
robustness towards noise and outliers:
i) Motion Segmentation (Sec. 3.1) leverages robust multi-model fitting to segment the
rigidly moving objects in image pairs. Given the assumption that the intrinsics are con-
stant, we use the 6-point algorithm [34] to compute fundamental matrices F describing the
rigid motions. In contrast to the classical 7-point algorithm, this allows us to fully exploit the
rigidity constraints to derive an interval of tentative focal lengths. Remarkably, by reducing
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φ̂f

Figure 2: Left and middle: Motion Segmentation for a sample image pair. Motions are color coded,
outliers are marked as black points. Right: KDE distribution φ̂ f of focal lengths from Kernel Voting.

the minimal sample set to 6 matches, also robustness is improved.
ii) Robust initialization (Sec. 3.2) derives epipolar constraints from F at step (i) to compute
a distribution of focal length φ f0 . We exploit the redundancy of these constraints and the
interval of focal lengths, to prune out bad initializations using Kernel Voting.
iii) Robust Optimization (Sec. 3.3) refines the camera parameters. The optimization achieves
robustness by sampling initial guesses from φ f0 at step (ii) and exploiting subsets of F from
step (i) to define the cost function. Specifically, we decouple the computation of the fo-
cal length from the optical center to achieve faster convergence and numerical stability. In
addition, our method is parallelized to improve efficiency.

3.1 Motion Segmentation
In the first step, we estimate: i) a set of pairwise fundamental matrices F = {F1, . . . ,Fk}
describing 3D motions in the scene, ii) an interval [ flow, fhigh]⊂R of tentative focal lengths.
Our Motion Segmentation leverages T-linkage [22], a multi-model fitting framework that
exploits preference analysis to cluster correspondences according to their rigid motion.

As usual in SfM, we extract keypoints and establish matches Mi j between image pairs
(Ii, I j). T-linkage takes the matches Mi j as input and automatically segments the motions by
fitting multiple fundamental matrices. Specifically, T-linkage clusters the preference of data
w.r.t. a pool of provisional models attained with random sampling of minimal sample sets
(MSS). As opposed to classical segmentation methods, we exploit the constant parameters
K across images and apply the 6-point algorithm [34] to sample fundamental matrices and
their corresponding focal lengths. The quality of a fundamental matrix estimated with the
6-point algorithm correlates to the ratio of its two largest singular values [40], as a low ratio
indicates critical motions. Thus, we discard models for which this ratio is below 0.9. The
lower and upper limits flow, fhigh are defined as the lower and upper quantiles respectively
of the set of the focal lengths of the attained clusters. Finally, the fundamental matrices
are fitted on the inliers of the clusters having enough matches (12 in our experiments) and
refined by minimizing the Sampson distance. A clustering example is reported in Fig. 2,
where matches are clustered according to the rigid motions in the scene.

3.2 Robust Initialization
In this step, we compute a robust estimate f0 of the focal length and its distribution φ f0 . This
information serves as an initial guess for the following optimization step. As in [32, 37], we
initialize the focal length by assuming unit aspect ratio, i.e., f0 = fx = fy in the calibration
matrix K, and separately refine fx, fy in the subsequent optimization step (Sec. 3.3). Specif-
ically, we initialize f0 by exploiting a hypothesize-and-verify framework (Alg. 1). We test a
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Algorithm 1: Robust initialization
Input : Fundamental matrices F = {Fk}, flow, fhigh, image width w and height h,

maximum opening angles A= {α j}
Output: Distribution φ f0 ∼N ( f0,σ

2
f0) modelling the focal length

1 J ←∅;
2 foreach α j ∈ A do
3 Compute f j from α j using Eq. (2) ; /* Hypothesis step */
4 if f j ∈ ( flow, fhigh) then
5 foreach Fk ∈ F do
6 Compute semi-calibrated matrix G j,k from f j and Fk via Eq. (3) ;
7 G= G/∥G∥F ;
8 Compute Kruppa Equations via SVD of G j,k ;
9 f̂ j,k← solution of Kruppa quadratic equation closest to f j ;

10 if f̂ j,k solves Kruppa two linear equations then
11 insert f̂ j,k in J ; /* Verification step */
12 end
13 end
14 end
15 end
16 φ̂ f ← KDE(J ) ; /* Kernel Voting */

17 f0← maximal peak in φ̂ f ; /* mean */
18 σ f0 ← Qn(J ,µ) ; /* std */

19 φ f0 ∼N ( f0,σ
2
f0) ;

set of feasible focal lengths within the limits flow and fhigh and verify these using the rigidity
constraints in the fundamental matrices Fk ∈ F from Motion Segmentation.

Following [32], in the hypothesis step, we parameterize the space of focal lengths in
terms of the maximal opening angles A = {α1, . . . ,αm} of the camera. The motivation is
that, unlike focal lengths, opening angles are independent of image resolution. In practice,
we test m= 100 opening angles from 0.5 to 99.5 sampled with step 1.0. Each α j ∈A (line 2)
is converted into a focal value f j (line 3) using the image width w and height h via:

f j =
max(w,h)

2× tan(α j/2)
, α j = 0.5, . . . ,99.5 (2)

The range of opening angles is further restricted to those α j ∈ A that, when converted to f j,
fall within the interval [ flow, fhigh] obtained in Sec. 3.1 (line 4).

The verification step builds upon [37], which was conceived to estimate a focal length by
the Kruppa equations. For each fundamental Fk ∈ F (line 5), a “semi-calibrated fundamen-
tal” matrix G j,k is derived by inverting a tentative calibration matrix built using f j (line 6):

G j,k =

 f j 0 0
0 f j 0

w/2 h/2 1

Fk

 f j 0 w/2
0 f j h/2
0 0 1

 (3)

Intuitively, G j,k would coincide with the essential matrix if the unknown focal length of the
camera were equal to the tentative f j and the principal point were located at the image center
(w

2 ,
h
2 ). G j,k is scaled to unit Frobenius norm (line 7) to improve numerical stability and is

decomposed via SVD to derive the simplified Kruppa equations reported in [37] (line 8).
The Kruppa equations consist of one quadratic and two linear equations in the unknown

f 2
j,k. Firstly, we solve the quadratic equation, and keep the root f̂ j,k closest to the initial guess
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Algorithm 2: Optimization
Input : A set of fundamental matrices F = {Fi}, a distribution φ f0 of the initial

guess of f0, the width w and height h of the images
Output: The intrinsic parameters of the camera fx, fy,u,v

1 J =∅ ;
2 for i← 1 to max-iters do
3 f0← sample φ f0 ;

4 u0← sample N (w
2 ,

w2

36 ), v0← sample N ( h
2 ,

h2

36 );
5 Fmin← random-minimal-sample(F);
6 f̃ ← levenberg-marquardt(Fmin, f0,u0,v0);
7 insert f̃ in J ;
8 end
9 f ← maximal peak in KDE(J );
/* Joint refinement of the intrinsics */

10 for Fi ∈ F do
11 R[i]← mendonça-cipolla-residual(Fi,

w
2 ,

h
2 ) ;

12 end
13 Foptim← set of 3 Fi ∈ F with lowest residual R[i];
14 fx, fy,u,v← levenberg-marquardt(Foptim, f , w

2 ,
h
2 );

f j (line 9) if it also satisfies the Kruppa linear equations (line 10). We consider only the real
part of f̂ j,k and discard solutions with an imaginary part greater than a tolerance at 10−6.

As opposed to the original Sturm’s method, we do not require prior information about the
camera, such as a fixed guess of the focal length. This is because our voting scheme explores
the space of feasible focal lengths identified by the motion segmentation. In this way, we
obtain several tentative values { f̂ j,k}, one for each fundamental matrix Fk and hypothesized
focal length f j. Wrong guesses f j or small perturbations on Fk impact the Kruppa equations
and yield noisy or severely wrong focals f̂ j,k. However, we observe a general agreement
between f̂ j,k that concentrates around the genuine solution. This is shown in Fig. 2 (right),
where the frequency of f̂ j,k reaches its peak as the relative error w.r.t. the genuine solution
tends to zero.

As in [17], we use a Kernel Voting scheme to identify the best f0, and apply a Kernel
Density Estimator (KDE) to derive the distribution φ̂ f (x) of f̂ j,k (line 16) using a Gaussian
kernel K with bandwidth h at 5% of the median of J = { f j,k}. The distribution is given by:

φ̂ f (x) = ∑
f̂ j,k∈J

K( f̂ j,k− x)
h

. (4)

We set the highest peak of φ̂ f as the estimate of the focal length f0 (line 17). Since guesses
of the focal length concentrate around the genuine solution with few exceptions, we expect
φ̂ f to be unimodal. As depicted in Fig. 2 (right), we fit a Gaussian distribution φ f0 with mean
f0 and standard deviation σ f0 given by the Qn scale estimator [31] (line 18), and use this in
the following step of our algorithm.

3.3 Robust Optimization
In this step, we refine all internal parameters fx, fy,u,v by minimizing the Mendoça-Cipolla
cost function [23] derived from the fundamental matrices in F . In practice, since errors in

Citation
Citation
{Li} 2006

Citation
Citation
{Rousseeuw and Croux} 1993

Citation
Citation
{Mendonça and Cipolla} 1999



PORFIRI DAL CIN, BORACCHI, MAGRI: MULTI-BODY SELF-CALIBRATION 7

F are frequent due to image noise, outlying matches, and critical motions [38], we design
our optimization to be robust. We achieve robustness in two main steps described in Alg. 2.
The first step (lines 1-9) assumes f0 = fx = fy and builds upon randomized multi-start [30]
to further improve the estimated focal length f . The idea is to sample initial points from the
distribution φ f0 of the guessed focal length to avoid local minima and numerical instabilities.
At each iteration, a random subset of the fundamental matrices F is involved in the cost
function to reduce the effect of outliers. In the second step (lines 10 - 14), a further refinement
is performed to jointly estimate the focal lengths fx, fy and the principal point (u,v).

Randomized multi-start optimization is structured as a loop: at each iteration, we sample a
focal length f0 from φ f0 (line 3) and a principal point u0 and v0 from φuo and φv0 respectively
(line 4). We assume that the coordinates of the principal point follow a Gaussian distribution
φu0 ∼ N (w

2 ,(
w
6 )

2) centered in the image center. We set σu0 so that 3σu0 =
w
2 and 99% of

sampled values fall within [0,w]. Similarly, φv0 ∼N ( h
2 ,(

h
6 )

2). At each iteration, we sample
a minimal sample set (MSS) Fmin of three fundamentals from F (line 5), which allow to
uniquely compute K in case the intrinsic parameters are constant [27]. Similarly to [30], the
number of iterations of the multi-start is set so that each possible MSS of F is chosen with a
95% probability. Note that each iteration is independent and thus parallelized.

The optimization scheme is based on Levenberg-Marquardt and takes as input the initial
guess of the intrinsics andFmin to minimize the Mendoça-Cipolla cost function (line 6). This
cost encourages the essential matrix Ek =K⊤k FkKk derived from the k-th fundamental matrix
Fk to have identical non-zero singular values σ(1,k) and σ(2,k):

C(Kk, i = 1, . . . ,n) = min
1
|F |

|F |

∑
k=1

σ(1,k)−σ(2,k)

σ(2,k)
. (5)

Since cost function (5) shows excellent convergence, as demonstrated in [9], we limit the
iterations of the Levenberg-Marquardt to 100 to achieve a balance between accuracy and
running time. This optimization returns a refined focal length f̃ , which is recorded in a set
J (line 7). The most likely focal length f is then estimated from J by fitting a KDE and
finding its maximum (line 9), similarly to Sec. 3.2. The bandwidth for the KDE is set to 5%
of the median of the input focal lengths.

Joint refinement of the focal lengths fx, fy and the principal point (u,v) allows full camera
calibration. For all Fi ∈ F , we evaluate the Mendonça-Cipolla cost function with f from the
KDE as the focal length and the image center as the principal point (lines 10 - 11). The three
fundamental matrices with the lowest residuals are chosen to derive the cost function of the
final Levenberg-Marquardt routine (line 13), which is initialized starting from focal length f
and principal point (w

2 ,
h
2 ) (line 14). This Levenberg-Marquardt routine is also limited to 10

iterations, as the intrinsics are assumed to be close to the optimum at this stage.

4 Experiments
We demonstrate the effectiveness of the proposed self-calibration algorithm in two sets of
experiments. Sec. 4.1 focuses on evaluating our robust initialization step without consider-
ing the subsequent optimization. Isolating the performance assessment to the initialization
is important for two reasons: i) the optimization may compensate for poor initializations,
ii) since the optimization step is interchangeable, this evaluation is insightful for other op-
timization schemes that rely on a robust initialization. Then, in Sec. 4.2, we evaluate our
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complete pipeline. Specifically, we show that our approach is comparable to a state-of-the-
art self-calibration method [25] on static scenes and improves performance on dynamic ones.
Remarks about the impact of critical motions and computational times conclude the section.

Datasets For static scenes (moving object m= 1) , we consider the popular SfM benchmarks
in [36]. For dynamic scenes (moving objects m > 1), we consider the traffic video sequences
in the Hopkins155 dataset [42] characterized by 2 or 3 motions. For better accuracy, we
refined the intrinsics using COLMAP [33] by providing manually annotated masks to segment
the motions. We extract images from videos with a 5-frame interval to have a sufficient
baseline between consecutive views. Given the scarcity of multi-body calibrated datasets,
we also introduce a new dataset, called Amiibo dataset, which comprises three static
scene sequences and three dynamic scenes with either two or three independent motions.
The dataset is available at [1].

Performance metrics to assess the calibration performance are the percentage error on the
estimated focals ( f̃x, f̃y) w.r.t. the real ( fx, fy) and the estimated principal point (ũ, ṽ) w.r.t.
the real (u,v):

errf =
1
2

(∣∣∣∣ f̃x− fx
fx

∣∣∣∣+ ∣∣∣∣ f̃y− fy
fy

∣∣∣∣)×100 , erruv =
1
2

(∣∣∣∣ ũ−u
u

∣∣∣∣+ ∣∣∣∣ ṽ− v
v

∣∣∣∣)×100 . (6)

4.1 Evaluation of Robust Initialization

We evaluate the accuracy errf and the precision stdf of our robust initialization step on real
datasets against two baselines: i) vanilla, the average of the focal lengths computed from
each fundamental matrix using Sturm’s method [37], ii) vanilla with Kernel Voting, where
the vanilla method is equipped with Kernel Voting to select the most likely focal length.

Fig. 3 reports the performance on static (top) and dynamic scenes (middle). Our initial-
ization outperforms the alternatives in all tests, both in precision and accuracy. We show
in Fig. 3 (bottom) three examples of the estimated density φ f for a static (S1-Amiibo) and
two dynamic (M1-Amiibo and cars4) scenes. In the dynamic case, the distribution exhibits
multiple peaks due to motions close to degenerate or with small support resulting in poor
fundamental matrices. Nonetheless, our method also identifies the correct peak in these
challenging cases. We also perform synthetic experiments (in the Supplementary Material)
that confirm the advantages of our approach on less-noisy distributions as well.

4.2 Evaluation of the complete pipeline

We compare our self-calibration against the non-robust baseline [23] of Mendonça-Cipolla
(M&C) and a state-of-the-art self-calibration based on Consensus Maximization and Branch-
and-Bound (BnB) [25]. All methods are evaluated on both static and dynamic scenes. For
dynamic scenes (m > 1), we ran experiments on two configurations: i) Single-body, where,
as usually done, we consider only the dominant motion, ii) Multi-body, where we provide the
competing methods, which are natively limited to static scenes, all the epipolar constraints
recovered by our motion segmentation, enabling a fair comparison.

Static scenes: Tab. 1 (top-left) reports experiments on static scenes. In both accuracy met-
rics errf and erruv, our method outperforms M&C and produces comparable results to BnB,
outperforming it in 4 of 6 datasets for errf and in 3 of 6 datasets for erruv.

Citation
Citation
{Paudel and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2018

Citation
Citation
{Strecha, Vonprotect unhbox voidb@x protect penalty @M  {}Hansen, Vanprotect unhbox voidb@x protect penalty @M  {}Gool, Fua, and Thoennessen} 2008

Citation
Citation
{Tron and Vidal} 2007

Citation
Citation
{Schönberger and Frahm} 2016

Citation
Citation
{Ami} 

Citation
Citation
{Sturm} 2001

Citation
Citation
{Mendonça and Cipolla} 1999

Citation
Citation
{Paudel and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2018



PORFIRI DAL CIN, BORACCHI, MAGRI: MULTI-BODY SELF-CALIBRATION 9

Figure 3: Our method vs. alternative initialization strategies. Vanilla in green, Vanilla with Kernel
Voting in red, and ours in blue. Top: box plot of errf on static datasets. Middle: box plot of errf on
dynamic datasets. Bottom: Kernel density function φ̂ f (black) for the static S1-Amiibo, the multi-body
M1-Amiibo and cars4 datasets. x-axes are scaled to represent the relative error (%) errf of the focal
length. Lower and upper limits flow, fhigh are reported. Our method attains a focal length error of 22px
on S1-Amiibo, 48px on M1-Amiibo, and 126px on cars4.

Dynamic scenes: Tab. 1 (bottom) reports the results on dynamic scenes for single and multi-
body configurations. The advantages of exploiting all motions in the scene are apparent, as
neither Ours or BnB in their Single-body configuration match the accuracy in errf and erruv
attained by Ours in its Multi-body configuration. In addition, results show that our method
in Multi-body shows the most significant uplift in accuracy w.r.t. its Single-body counterpart
and is consistently the most accurate in this configuration. Interestingly, when Mendonça-
Cipolla is provided with all the motions, it shows a regression in performance due to its
sensitivity to outlying fundamental matrices. This demonstrates that while multiple motions
provide useful constraints, exploiting them is a hard problem that may introduce more noise
and outliers, requiring an ad-hoc robust method. Synthetic experiments in the Supplementary
Material also confirm these results.

Multi-body results on the Amiibo dataset are generally better than those observed on the
Hopkins155 sequences. This can be ascribed to the different characteristics of the two
datasets. In the Amiibo sequences: i) well-textured figurines provide many keypoints, ii)
viewpoint changes generally yield well-conditioned motions, iii) our method’s initial focal
length guess is closer to the ground truth due to the camera having an aspect ratio close to 1,
iv) high-resolution images help to achieve more accurate results.

Critical Motions [38] hinder the self-calibration of a camera with a fixed focal length in
configurations where either: i) the optical axes are parallel to each other or ii) the camera
center lies on a circumference centered at the intersection of the optical axes [39]. Tests on
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Single-body on static datasets

Ours BnB [25] M&C [23] Ours BnB [25] M&C [23]

Dataset m |I| errf erruv errf erruv errf erruv errf erruv errf erruv errf erruv

Fountain 1 25 0.87 1.12 0.84 1.01 12.47 11.02 - - - - - -
Herz-Jesu 1 7 1.04 1.21 1.10 1.28 18.09 11.54 - - - - - -
Castle 1 20 0.91 1.18 0.94 1.09 12.31 11.46 - - - - - -
S1-Amiibo 1 15 0.66 3.98 0.68 3.98 15.12 8.92 - - - - - -
S2-Amiibo 1 12 2.87 6.02 2.74 6.00 18.67 18.93 - - - - - -
S3-Amiibo 1 16 0.49 3.89 0.51 3.92 7.48 12.02 - - - - - -

Single-body on dynamic datasets Multi-body on dynamic datasets

cars1 2 4 17.41 1.28 16.85 1.21 67.81 74.31 12.45 1.21 16.48 1.21 69.01 73.92
cars2 2 6 33.48 3.03 34.28 2.97 81.47 79.31 15.18 3.14 19.02 2.91 88.13 77.16
cars3 3 4 21.76 6.21 21.01 6.49 156.87 74.01 7.82 2.54 9.10 2.86 184.09 102.42
cars4 2 11 40.62 6.81 38.29 7.02 62.01 48.99 18.36 6.41 20.48 7.14 75.88 38.26
cars5 3 7 23.49 4.21 22.01 4.01 76.01 58.12 11.78 4.01 15.71 4.01 72.45 61.34
cars6 2 6 7.38 1.83 7.38 2.01 41.91 38.74 5.30 1.89 5.30 1.91 67.30 59.34
cars7 2 6 8.79 1.92 8.67 1.85 38.54 41.27 6.51 1.85 8.46 1.98 45.87 31.28
cars8 2 6 19.28 2.87 21.01 2.65 102.48 87.01 9.01 2.81 12.49 2.98 98.06 79.61
cars9 3 12 15.99 2.68 14.87 2.41 27.61 19.47 8.12 2.42 9.34 2.67 38.91 65.81
cars10 3 6 31.62 12.84 31.91 12.62 91.45 78.34 15.82 7.42 16.53 8.01 89.45 62.01
truck1 2 6 14.78 6.84 13.98 7.28 68.12 72.13 4.87 1.87 6.92 2.32 72.58 45.61
truck2 2 4 13.32 7.21 13.38 6.58 68.58 71.20 4.24 2.31 7.18 3.01 74.69 89.30
M1-Amiibo 2 10 3.29 4.28 3.21 4.22 43.29 51.32 1.27 3.86 2.84 4.04 62.88 50.14
M2-Amiibo 3 4 39.28 36.71 39.85 37.21 89.41 92.01 4.97 3.71 7.21 4.28 93.12 92.86
M3-Amiibo 2 4 3.20 5.89 3.28 5.71 41.28 39.62 1.37 3.96 2.19 4.27 53.76 46.12

Table 1: Self-calibration comparison on real data in Single-body and Multi-body. Number of rigid
motions m in the dataset, total number of images processed |I|, and relative errors errf and erruv. Tests
were repeated 10 times, the average error is reported. Considering fx, fy independently, relative errors
err fx and err fy are equally distributed after accounting for the aspect ratio. This also applies to erru,errv.
Top: static scenes. Bottom: dynamic scenes.

the KITTI dataset [11] show that when the forward motion is dominant (case i), our method,
BnB [25] and COLMAP all fail to calibrate, whereas calibration is achieved when motions
are varied. Refer to the Supplementary Material for calibration results on critical motions.

Running time of our method is dominated by the Motion Segmentation, though this also
applies to BnB and M&C when used in their multi-body configuration. Without considering
the segmentation, our method achieves running times in the same order of magnitude as BnB
(60% slower on average). At the same time, the non-robust M&C is faster by two orders of
magnitude. A comparison with exact timings is available in the supplementary material.

5 Conclusions

We have extended self-calibration of a single moving camera with constant but unknown
intrinsic parameters to the case of dynamic scenes, i.e., 3D scenes composed of multiple
bodies moving rigidly. Results confirm that having constraints from multiple motions is
beneficial, and demonstrate that our multi-body self-calibration solution can successfully
address robustness issues exacerbated in dynamic setups. Future work will focus on apply-
ing the multi-body analysis to a wider extent, tackling the case of non-constant intrinsics
and integrating it into SfM pipelines. We hope our solution can be a step forward for the
development of practical techniques to address the challenges of multi-body SfM.
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