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1 Introduction
This document provides additional materials omitted from the main manuscript due to space
restrictions. In Section 2, we describe the proposed multi-body Amiibo dataset, and the
camera calibration process used to obtain ground-truth camera internal parameters. In Sec-
tion 3, we integrate the experimental validation presented in the main manuscript with ad-
ditional results related to the performance of the proposed method. Specifically, we present
the results of our pipeline on synthetic datasets, discuss the impact of critical motions, and
comment on the computational burden of the proposed approach. The Supplementary Mate-
rial includes a Zip file containing a MATLAB implementation of the proposed method and
several running examples to test it on both synthetic and real datasets. The code is available
at [1].

2 Amiibo Dataset
In this section, we describe the proposed Amiibo dataset introduced in the main manuscript
and provide additional details on the camera calibration process. Introducing a new dataset
stems from the scarcity of public, calibrated, multi-body datasets. The Hopkins155
dataset provides several multi-body sequences with diverse motions, but it only contains
short video sequences, and the background is always visible and often dominant w.r.t. the
moving objects. For a more in-depth evaluation, we propose the Amiibo dataset, which
contains challenging scenes in which the background is not always visible or in focus. In ad-
dition, images are taken from different viewpoints, and rigid objects exhibit complex shapes
and a significant variation in size w.r.t. the camera field of view. The dataset and calibration
parameters are available at [1].

Calibration The images were captured with a Canon EOS 400D. The calibration was ob-
tained with the MATLAB R2021b Camera Calibration app included in the Computer Vision
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(a) S1-Amiibo - IMG_4256 (b) S2-Amiibo - IMG_4282 (c) S3-Amiibo - IMG_4290

(d) M1-Amiibo - IMG_4208 (e) M2-Amiibo - IMG_4333 (f) M3-Amiibo - IMG_4356

Figure 1: Example images taken from each sequence of the Amiibo dataset. Top: example
images from static sequences. Bottom: example images from dynamic sequences.

Toolbox using 20 shots of a 10 × 7 checkerboard pattern. The images used to calibrate
the camera are included in the Supplementary Material for reference. Images are of size
4272×2848 (12 Megapixels) and the calibration matrix K is:

K=

5461.35 0 2125.94
0 5468.33 1317.80
0 0 1

 (1)

We also account for radial distortion in the images and report the two radial distortion coef-
ficients of the lens k1,k2:

k1 = 0.2230 (2)
k2 = 0.5958 . (3)

We did not consider a third distortion coefficient k3 due to the fact that our camera exhibits
very limited lens distortion. The distorted points are denoted as (xdistorted,ydistorted):

xdistorted = x(1+ k1 ∗ r2 + k2 ∗ r4) (4)

ydistorted = y(1+ k1 ∗ r2 + k2 ∗ r4) (5)

where r = x2 + y2. We use the radial distortion model above to undistort the images before
extracting keypoints in the motion segmentation step.

Description of sequences The dataset comprises six sequences, with three static scene
sequences and three dynamic scene sequences with either two or three motions. We provide
a detailed description of each sequence:

(i) S1-Amiibo (16 images, static)

Depicts 3 static objects in slightly varying lighting conditions with a slightly out of
focus background.
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Figure 2: A graphical overview of the proposed multi-body self-calibration pipeline. The main steps
of the algorithm are depicted (white boxes), as well as their inputs and outputs (grey boxes).

(ii) S2-Amiibo (12 images, static)

Depicts 3 static objects in addition to two planar surfaces in the background in slightly
varying lighting conditions.

(iii) S3-Amiibo (17 images, static)

Depicts a large number of static small objects in varying lighting conditions and with
a slightly out of focus background.

(iv) M1-Amiibo (10 images, dynamic)

Depicts a dynamic scene with a moving object (red bus) w.r.t. a static group of objects
(green and yellow car) in varying lighting conditions. The background is mostly out
of focus.

(v) M2-Amiibo (4 images, dynamic)

Depicts 3 moving objects in varying lighting conditions. The static element in the
scene is given by 3 smaller objects near the center of the scene.

(vi) M3-Amiibo (4 images, dynamic)

Depicts 2 moving objects in consistent lighting conditions and with the background
clearly in focus.

3 Experiments

This section provides additional experimental results to Sec. 4 of the main manuscript.
Specifically, we include i) results from synthetic experiments referenced in Sec. 4.1 and
Sec. 4.2 of the main paper, ii) the extended version of Tab. 1 of the main paper with the
addition of execution times and the standard deviation of errors errf and erruv. A scheme of
the proposed method multi-body self-calibration pipeline is reported in Fig. 2.

3.1 Synthetic experiments

Following the structure of Sec. 4 of the main paper, we independently evaluate the robust
initialization step, and then we assess the performance of the whole pipeline on synthetic
datasets.
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vanilla vanilla + KV Our Init.

#F errf stdf errf stdf errf stdf

15 25.0 47.8 11.2 27.7 3.9 19.8
25 23.0 38.8 5.8 28.6 1.05 19.8
50 14.5 33.0 7.6 20.9 2.80 19.2
75 8.3 32.8 4.7 21.7 1.06 16.6

Table 1: Our robust initialization vs. alternative initialization strategies. Vanilla in green,
Vanilla with Kernel Voting in red, and ours in blue. Number of fundamental matrices as
input #F , relative error errf and standard deviation stdf

3.1.1 Synthetic datasets

We generate a set of synthetic 3D scenes to establish 2D image matches. Each synthetic
scene is made of several sphere-shaped objects defined by 100 3D points, which randomly
translate and rotate. For every synthetic scene, we generate two projections matrices P1 =
[I, t1] with t1 = [0 0 1]⊤, and P2 = [R2, t2], where t2 is randomly sampled with a uniform
distribution from 5 to 10, and R2 corresponds to a random rotation along the yaw and pitch.
We simulate image noise by adding zero-mean Gaussian noise with standard deviation σ = 5
to matches across both dimensions.

3.1.2 Robust initialization

We evaluate the accuracy errf and the precision stdf, i.e., the standard deviation of errf, of our
robust initialization step on synthetic datasets against the same two baselines from the main
manuscript: i) vanilla, the average of the focal lengths computed from each fundamental
matrix using Sturm’s method [5], ii) vanilla with Kernel Voting, where the vanilla method is
equipped with Kernel Voting to select the most likely focal length. Specifically, our goal is
to validate the claim from the main manuscript that our robust initialization step outperforms
these baselines on synthetic, less-noisy datasets.

Tab. 1 compares our robust initialization against these baselines. We show that our so-
lution achieves lower relative errors w.r.t. the real focal length and reduced stdf, which
validates superior robustness. Fig. 3 shows the estimated kernel density functions φ̂ f and
the retrieved focals with a varying number of fundamental matrices provided as input. The
x-axes are scaled to represent the relative error so that the origin corresponds to the ground-
truth focal. Results show that the peak of the kernel density function produced by our method
is always closer to the ground truth focal length (0% relative error) w.r.t. the two baselines.
These results demonstrate that both the kernel voting and the exploration of maximal opening
angles are beneficial and are responsible for improved precision and accuracy.

3.1.3 Complete pipeline

We evaluate our complete multi-body self-calibration pipeline on synthetic datasets charac-
terized by either 1, 2 or 3 motions with a fixed percentage of outliers (50%), as described in
Sec. 3.1.1. In this section, we validate the claims from the main manuscript that our method
can successfully exploit the multiple motions in the scene to constrain the self-calibration
better, and is robust towards noise and outliers on synthetic datasets as well.
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(a) Synth. 15 fund (b) Synth. 50 fund (c) Synth. 75 fund

Figure 3: The kernel density function φ̂ f plotted in black. x-axes are scaled to represent the
relative error (%) errf of the focal length. The green line is the result of vanilla, in red vanilla
with Kernel Voting and in blue our robust initialization.
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Figure 4: Relative error of our multi-body self-calibration configured with different number
of motions varying the number of input images.

Fig. 4 shows errf and erruv as a function of the number of images in the synthetic se-
quences. Tests were repeated 100 times, and we reported the average errors from all the
runs. Results confirm the findings from the main paper and show that our method is robust
towards outliers and noise, as it successfully estimates the correct focal length and principal
points when a sufficient number of views is available. Moreover, fewer images are needed to
achieve accurate results as more moving bodies become available. Specifically, more bodies
help in configurations where only a few images are provided as input. For instance, Fig.4
shows that using 3 motions in 5 images (3×

(5
2

)
= 30 constraints) yields a relative error errf

which is lower than that achieved by using only 1 motion in 10 images, despite
(10

2

)
= 45

constraints being available in the latter case.

3.2 Real experiments

In this section, we provide additional results from experiments on real datasets that were
omitted from the main manuscript due to space constraints. First, in Sec. 3.2.1 we report
and discuss the execution times of the experiments on real datasets. Then, in Sec. 3.2.2 we
provide further results on critical motions and the exact results attained on the KITTI dataset
[2].
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Single-body on KITTI sequences Multi-body on KITTI sequences

Ours BnB [4] M&C [3] Ours BnB [4] M&C [3]

Dataset m |I| errf erruv errf erruv errf erruv errf erruv errf erruv errf erruv

Seq005 3 20 3.21 2.09 3.05 2.11 27.49 38.71 2.01 1.61 3.01 2.04 42.57 35.27

Seq048 2 20 56.01 39.26 42.89 43.16 65.41 47.13 55.47 43.98 64.61 56.71 78.63 93.51
Seq113 2 20 81.95 70.92 97.71 66.61 89.94 76.72 80.66 50.44 80.05 79.29 83.58 88.68

Table 2: Self-calibration comparison on the KITTI [2] dataset in Single-body and Multi-body. Number
of rigid motions m in the dataset, total number of images processed |I|, relative errors errf and erruv.
Tests were repeated 10 times, the average error is reported.

3.2.1 Extended results on timings

We report the extended version of Tab. 1 from the main paper with additional results on
the standard deviation of errf and erruv, and the running times of our method relative to
the baselines of BnB [4] and M&C [3]. Execution times do not account for the Motion
Segmentation step, which is common across all reported methods and takes a significant
percentage of the total running time (at least 92% on average).

The reported execution times are averaged over 10 runs. Tests were performed on a 10-
core Apple M1 Pro with 16 GB of RAM running MATLAB R2021b. BnB [4] and M&C
[3] are also implemented in MATLAB. As reported in Sec. 4.2, our method is 60% slower
on average than the robust BnB [4] method. However, the implementation of BnB relies on
native (compiled) code for the expensive search paradigm that is significantly more efficient
compared to an equivalent MATLAB implementation. In addition, performance from our
method can be improved by reducing the number of iterations (at a slight cost in accuracy)
or by using a more effective parallelization strategy for the multi-start. M&C [3] is non-
robust and generally two orders of magnitude faster than our method and BnB.

3.2.2 Extended results on Critical Motions

As discussed in Sec. 4.2 of the main paper, we tested our self-calibration method on the
KITTI dataset. Several sequences of the KITTI dataset represent a failure case for our
method, as well as for BnB [4] and M&C [3]. It is well-known that critical configurations
[6] limit the applicability of self-calibration. As explained in the main paper, the two-view
self-calibration of a camera with a fixed focal length gives rise to critical configurations when
the optical axes are parallel to each other. Specifically, this condition occurs when cameras
move forward in a straight line. Forward motions are dominant in most sequences of the
KITTI dataset [2] and our experiments show that we cannot calibrate the camera success-
fully. Tab. 2 reports experiments on three sequences of the KITTI dataset. For Seq048
and Seq113, all methods produce significant errors errf and erruv and cannot calibrate the
camera successfully. Instead, in Seq005, we can see the car turning several times and gen-
erally does not move in a straight line. In this scenario, our self-calibration method performs
significantly better and can calibrate the camera.
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