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Abstract

Despite the impressive success of vision transformers in various vision tasks, they
are largely overlooked for anomaly detection and segmentation tasks. In this paper, we
focus on the attention mechanism in the transformer and propose a new proxy task for
model training followed by a test-time adaptation. In particular, we present a simple yet
effective attention-guided cut-and-paste data augmentation for creating synthetic anoma-
lies from nominal training images by intermixing scaled patches of various sizes guided
by the transformer’s attention map. Subsequently, we solve a proxy task by discriminat-
ing between nominal examples and synthetic anomalies. Furthermore, to alleviate the
distribution discrepancy between training and test data, we adopt a test-time adaptation
scheme based on the transformer’s attention entropy. Extensive experimental results for
anomaly detection and localization task on a popular MVTec AD benchmark and NIH
Chest X-ray dataset demonstrate the superiority of our method over competitive baselines
and its generalization capabilities to detect and localize test-time anomalies.

1 Introduction
The ability to detect and localize anomalies is a mainstay of many safety-critical applica-
tions, ranging from industrial defect detection [3] to out-of-distribution detection on medical
images [49]. Due to tedious and costly annotation and also the absence of prior knowledge
about types of anomalies, many deep methods, including unsupervised and self-supervised
anomaly detection and segmentation algorithms [1, 2, 33], are formulated as one class clas-
sification setup, where the objective is to learn a distribution of the nominal samples and
define an anomaly score to label those outside the learned distribution as anomalies.

Existing top-performing anomaly detection and localization methods [17, 31, 44] are ow-
ing to the use of deep discriminative multi-scale features from the pre-trained convolutional
networks on ImageNet [9] with adaptation. Compared with fully convolutional networks,
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vision transformers (ViTs) [10, 39] offer higher representation power due to their global re-
ceptive field. In particular, ViT models trained in self-supervised setup [5, 19] achieve better
generalization and performance gain over convolutional networks. However, transformers
largely remain unexplored for anomaly detection and segmentation task.

This paper presents a transformer-based network using a simple yet effective self-supervision
task: detecting and localizing attention-guided synthetic anomalies for model training. In
addition, a test-time adaptation scheme has been adapted to further improve the model’s
generalization.

Contributions. Our contributions are summarized as follows:

• We propose a simple yet effective attention-guided cut-and-paste data augmentation
for creating synthetic anomalies using only nominal training data. In particular, unlike
previous augmentation strategies, which assume uniform relevance of image pixels for
applying synthetic manipulations, we are intrigued by the self-attention mechanisms
of the vision transformer and present attention-aware augmentation by intermixing
patches only within a salient image region. The proposed scheme simulates spatial
irregularities in the real anomaly and creates a more challenging proxy task;

• To further improve the model generalization and alleviates the mismatch between
test samples and training data (e.g., the distributional gap between real and synthetic
anomalies), we adopt a test-time adaptation scheme to match their class-aware distri-
butional statistics associated with the transformer’s attention entropy;

• We empirically show consistent performance improvements over current synthetic
anomaly augmentation methods [18, 35, 45] for anomaly detection and localization
on the challenging benchmarks of the MVTec AD [3] and the NIH Chest X-rays [41].
We also demonstrate that test-time adaptation further improves model generalization.

2 Related Work
Anomaly Detection and Localization Methods. Existing deep learning methods for anomaly
detection and localization often rely on the learning of distribution of normal images us-
ing lower-dimensional embedding [21, 33] or reconstructions derived from this embedding,
e.g., autoencoder architectures [2, 23], generative adversarial networks (GANs) [1, 34], or
normalizing flows [12, 32, 44]. Recently, vision transformers [10, 39], particularly those
trained in self-supervised setup [5, 19], have shown superior performances compared to
fully convolutional networks on various vision tasks. This is mainly due to the global re-
ceptive field of transformer architecture, yielding higher representation power. Nevertheless,
vision transformers are largely overlooked in recent anomaly detection and localization al-
gorithms, except for a few methods [28, 44]. Another category of anomaly detection and
segmentation approaches utilize self-supervised learning by solving various auxiliary tasks
such as matching different transformations of the same image [4, 5, 7], predicting geometric
transformations [11, 15], colorization [48], or context prediction [25]. More recent self-
supervised methods [18, 35, 37, 45] utilize data augmentation to create synthetic anomalies
as proxy tasks. These methods either apply synthetic manipulations in the image at random
locations [18] or randomly blend image patches from other images [35]. However, these
techniques assume all image pixels are equally important for patch blending and manipu-
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lation. Different from these approaches, our synthetic anomaly augmentation leverages the
non-uniformity of image regions to generate useful anomalies for model training.
Test-Time Adaptation Methods. Test-time adaptation aims to enhance the robustness of
the model against data shift by finetuning the trained source model using the unlabeled tar-
get samples during test time. Several recent works [6, 24, 36, 40] have been proposed for
online adapting of the leaned classifier to mitigate the distributional shift. Test-time train-
ing (TTT) [36] proposes test-time model finetuning using the auxiliary task of the rotation
prediction. Source hypothesis transfer (SHOT) [20] exploits information maximization by
optimizing entropy minimization and a diversity regularizer to tackle the domain shift be-
tween source and target data. Nevertheless, these approaches require additional architectural
modifications [36]. Some recent methods [24, 40, 47] propose source-free test-time adapta-
tion setup using only a trained model. For example, test entropy minimization (TENT) [40]
adapts the pre-trained model to the target data by continually updating the Batchnorm layer’s
parameters and statistics [42] via entropy minimization. Nonetheless, TENT may yield
catastrophic failure due to miscalibrated predictions under a large domain shift. Unlike
TENT, which modulates the model parameters only using the target data, similar to our test-
time adaptation scheme, some recent methods, e.g., [14] incorporate the statistics of source
data rather than source data to minimize the distributional shift between data domains. More
closely related to ours, [13] extends a test-time adaptation to a ViT model, which minimizes
the mismatch between source and target data distributions. While we adopt this scheme, our
test-time adaptation differs from [13] since we propose to match the selective distributional
statistics by leveraging the statistics for each predicted class.

3 Methodology

This section presents a new proxy task for the transformer-based anomaly detection and
localization method. As shown in Figure 1, the proposed method is a three-stage framework.
It consists of the proxy task formulated as supervised training (Figure 1 (top)) to detect and
localize attention-guided synthetic anomalies generated from only nominal training data,
offline statistics summarization for the source training data (Figure 1 (middle)), and a test-
time adaptation scheme (Figure 1 (bottom)).

We first discuss our proposed attention-guided synthetic anomalies in Section 3.1. In
Section 3.2, we detail our model training using synthetic anomalies. Then, we describe the
test-time adaptation scheme in Section 3.3. This is followed by the model evaluation and
experimental results in Section 4. Finally, we conclude our work in Section 5.

3.1 Attention-Guided Synthetic Anomalies

Self-Attention of the Class Token. The ViT architecture [10, 39] processes input image
x ∈ Rh×w×3 with the h×w spatial resolution by converting and embedding it to N patch
tokens xpatches∈ RN×d , and aggregates the global information by a class ([CLS]) token
x[CLS] ∈ Rd , which is then prepended to form patch embedding z=[x[CLS];xpatches]∈
R(N+1)×d . Given an input patch embedding z∈R(N+1)×d , a multi-head self-attention (MSA)
layer projects z to the query Q j, key K j, and value V j sequences for j = 1, · · · ,L, where L
is the number of heads, Q j,K j,V j ∈ RN+1×d′ and d′ = d/L. Then, the self-attention can be
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Figure 1: Schematic diagram of the model training and test-time adaptation. Top: The
model is trained using nominal training images and generated attention-guided synthetic
anomalies with corresponding segmentation masks. The attention maps are aggregated using
the learnable weights (followed by resizing) into a single anomaly segmentation prediction.
Bottom: After training, we compute and store the class-aware mean and second central
moment associated with transformer attention entropy on training data. During test-time
adaptation, we minimize the discrepancy of the distributional statistics for attention entropy
between training and test data. For simplicity, we only show one global view for normal and
anomalous images.

formulated as:

A j = softmax
(

Q jK>j /
√

d′
)

(1)

where it forms the attention matrix A j for each head j ∈ [L] using a row-wise softmax.
We average across all L attention heads to obtain the mean attention map Ā. Then, we focus
on the image patches that the [CLS] token is attending denoted by Ā[CLS] ∈ [0,1]N , which
is the first row of Ā:

Ā =
1
L

L

∑
j=1

A j (2)

Ā[CLS] =
{

Ā1,i | i ∈ [2,N +1]
}

(3)

The vector Ā[CLS] is then reshaped to (h/s)× (w/s) 2D attention map (using a patch size of
s× s pixels).
Proposed Synthetic Anomalies. The rationale behind the proposed synthetic anomaly strat-
egy is to create synthetic anomalies that are more relevant to the task by focusing on salient
object regions derived from the self-attention of the transformer rather than irrelevant re-
gions from the background. For instance, most defect categories of MVTec AD bench-
mark, e.g., transistor’s damaged leg, are around the salient object rather than the background
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(a) (b)
Figure 2: The illustration of the proposed attention-guided synthetic anomaly gener-
ation: (a) the proposed scheme leverages ViT’s attention map to guide sampling of the
informative locations to cut and paste patches; (b) pair examples of the synthetic anomalies
produced using only nominal images on the MVTec AD dataset. Red arrows highlight the
rotated pasted patches of scar shape.

(cf. Figure 2). Detecting and localizing synthetic anomalies can be a practical proxy task for
model training, bypassing the need for labeled data of natural anomalies.

The proposed synthetic anomaly generation is based on a cutting and pasting augmenta-
tion strategy. We harness the self-attention map corresponding to the [CLS] token of the last
layer of the pre-trained ViT [5] (ViT Scorer) to learn the distribution of salient image regions.
More precisely, we generate the mean self-attention map Ā for an input image by averaging
across all attention heads (Equation 2). To compute the distribution of the salient image re-
gions, we obtain the softmax of the mean attention map of [CLS] token Ā[CLS] ∈ [0,1]N

(Equation 3), which is then resized to the original input image dimensions. Afterward, we
re-normalize the distribution, which can be seen as the distribution Plocation to guide sampling
of the source locations (cx,cy)src ∼ Plocation and destination locations (cx,cy)dst ∼ Plocation
for cutting and pasting operations (Figure 2 (left)). The proposed proxy task is then to detect
and localize synthetic anomaly generated from anomaly-free training images as follows:

1. Compute the distribution of the salient regions from anomaly-free training image using
the fixed ViT Scorer. To do so, estimate the softmax distribution of the Ā[CLS].

2. Sample the source location (cx,cy)src ∼ Plocation for cutting a rectangle patch.
3. Select a rectangle patch of variable sizes and aspect ratios1 at the source location

(cx,cy)src as the center of a patch. Optionally sample a scar shape (thin rectangle) of
the image patch (Figure 2 (right)).

4. Optionally apply random rotation (from −90◦ to 90◦), and color jittering to the patch.
5. Sample the destination location (cx,cy)dst ∼ Plocation as the patch’s center for pasting.
6. Paste a patch back to an anomaly-free image at the destination location (cx,cy)dst .

3.2 Supervised Training Using Attention-Guided Synthetic Anomalies
We formulate supervised model training with the proxy task to simultaneously detect and
localize synthetic anomalies. Given a set of anomaly-free training images Xu, for an input

1By default, we sample the sizes for the width rw and height rh of the patches from a uniform distribution
∼ U(0.1W,0.4W ) for the image size of W ×W .
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training image x ∈ Xu, we create a synthetic anomaly using the proposed attention-guided
approach (Section 3.1), denoted as Att(x), where Att(·) is the attention-guided synthetic
anomaly generation. Following the multi-crop scheme [4], we increase augmented images
and randomly crop each input augmented image (normal or synthetic anomaly) into two
large crops (global views) and eight small crops (local views). Subsequently, this creates a
larger set of source training images X s. We aim to identify the image-level class yc (nor-
mal/abnormal) for a given image and also predict the segmentation mask Ys corresponding
to the anomaly pixels. For the ith training image, we assign the image-level label yci = {0,1}.
We set the label yci for the anomaly-free image to 0 and 1 otherwise (synthetic anomaly). In
addition, we obtain the segmentation masks Ys for anomalies by tracking where anomalies
were pasted (pasted rectangle patch) during synthetic anomaly creation.

In this formulated binary classification and segmentation setup, a learner Φ estimates
both classwise prediction and the corresponding anomaly segmentation maps

{
ŷc, Ŷs

}
. The

architecture Φ (Figure 1 (top)) consists of a ViT encoder fφ , parameterized by φ , which
is initialized from DINO weights [5], multi-layer perceptron (MLP) projection head gω , pa-
rameterized by ω for image-level classification, and a set of learnable weights for multi-head
attention maps from the last layer of encoder fφ . The projection heads gω takes the [CLS]
token output of the ViT encoder and outputs two neurons. We define the training objec-
tive for the image-level binary classifier in detecting attention-guided synthetic anomalies as
follows:

LAtt =
1

2 |Xu| ∑
x∈Xu

[CE(g( f (x))),0)+CE(g( f (Att(x))) ,1)] (4)

where CE is the cross-entropy loss. We omit the augmented images in Equation 4 for sim-
plicity, but we apply CE loss for all augmented images.

For the anomaly localization, the attention maps of the ViT’s last layer are aggregated
with the learned weights (followed by resizing), yielding a single anomaly segmentation map
Ŷs. More precisely, the weight of each attention map is learned to maximize its anomaly
localization ability by the Dice loss LDice, given the ground-truth masks of the synthetic
anomalies. The attention maps are detached from the gradient graph, so the model only
learns the best to average attention maps without influencing the ViT encoder. Combining
the image-level synthetic anomaly detection loss LAtt and the Dice loss LDice for the pixel-
wise anomaly localization, we derive the optimization problem using the proxy loss LProxy:

LProxy = (1−λ )LAtt +λLDice (5)

where λ ∈ [0,1] is used to balance the loss terms.

3.3 Test-Time Adaptation
Due to discrepancies between source training data and target test data, the trained model
may suffer from performance degradation. To prevent this, we adopt attention entropy-based
test-time adaptation. The proposed model adaptation follows per category learning protocol.
Offline Statistics Summarization. We first perform offline source data statistics sum-
marization step as auxiliary information regarding the distribution of source training data.
Once training completes, given a sample image from source training data xs

i ∈ X s, we store
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class-aware statistics, including the mean and second central moment associated with the
transformer attention entropy. Let Â(xs

i ;θ) ∈RN×N denote the learned aggregated attention
weight matrix2 of the ViT encoder’s last layer after model training parameterized by θ . The
attention entropy on the source sample xs

i can be calculated for tokens j ∈ N as follows:

Hs
i, j =−

N

∑
k=1

Â j,k (xs
i ;θ) log Â j,k (xs

i ;θ) (6)

Then we calculate and store in memory the class-aware mean µs
c and second central moment

Ms
c associated with attention entropy for source training data as follows:

µ
s
c =Concatj∈N

 1
|X s

c |
∑

xs
i∈Xs

c

Hs
i, j

 , c = (1,2) (7)

Ms
c =Concatj∈N

 1
|X s

c |
∑

xS
i ∈Xs

c

(
Hs

i, j−µ
s, j
c
)2

 (8)

where X s
c ⊂ X s contains all the source training images whose labels are c (either of two

classes of nominal or synthetic anomaly). µ
s, j
c = 1

|Xs
c | ∑xs

i∈Xs
c
Hs

i, j, and Concat denotes the
concatenation operation along the token dimension.
Test-Time Adaptation Using Class-Aware Statistics Alignment. At test time, our model
sequentially processes a mini-batch of test images from the target dataset X t = {xt

i}
Nt
i=1 and

is adapted to minimize the distance between class-aware statistics estimated from the mini-
batch of test images and the stored fixed values obtained from source training data. Let
X t,m ⊂ X t ,(m = 1, · · · ,M) denote the mth mini-batch of the target test data. We first obtain
a subset of X t,m

c ⊂ X t,m, which includes all unlabeled test images in the current mini-batch
X t,m, which are assigned to class c by pseudo labeling: argmaxc gω

(
fφ (xt

i)
)
. Then, for

each test image xt
i ∈ X t,m

c , similar to training data, we compute the attention entropy as in
Equation 9:

Ht,m
i, j =−

N

∑
k=1

Â j,k
(
xt

i; θ̄
)

log Â j,k
(
xt

i; θ̄
)
, xt

i ∈ X t,m
c (9)

where Â
(
xt

i; θ̄
)

denotes the aggregated attention weight matrix parameterized by θ̄ during
adaptation. Subsequently, the class-aware mean µs

c and second central moment Mt,m
c of the

attention entropy are computed for mth mini-batch of target test data as follows:

µ
t,m
c =Concat

j∈N

 1∣∣X t,m
c
∣∣ ∑

xt
i∈X t,m

c

Ht,m
i, j

 , c = (1,2) (10)

Mt,m
c =Concat

j∈N

 1∣∣X t,m
c
∣∣ ∑

xt
i∈X t,m

c

(
Ht,m

i, j −µ
t,m, j
c

)2

 (11)

2Â denotes the learned attention weight aggregated over all heads without the first entry. Alternatively, the most
representative head can be used.
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where µ
t,m, j
c = 1

|X t,m
c | ∑xt

i∈X t,m
c
Ht,m

i, j . Given statistics computed from source training data and

mini-batch of test samples, a test-time adaptation loss LTTA is defined as follows:

LTTA =
1
|C′|

(
1

logN ∑
c∈C′

∥∥µ
s
c−µ

t,m
c
∥∥

2 +
1

(logN)2 ∑
c∈C′

∥∥Ms
c−Mt,m

c
∥∥

2

)
(12)

where logN is the maximum value of the attention entropy, and C′ denotes a set of the
pseudo-labeled classes in the current mini-batch of test images.

4 Experiments

Training Setup and Metrics. We use PyTorch 1.9 [26] and train each model on a single
GeForce RTX 2080 Ti GPU. For the transformer encoder f , we use a ViT-small (ViT-S/16)
initialized from DINO weights [5]. The optimization is performed using the stochastic gra-
dient descent (SGD) with a momentum of 0.9 and gradient clipping at global norm 1.0 for
model training and test-time adaptation. We use a batch size of 16 and a learning rate of
5e−4. The learning rate is linearly warmed-up during the first ten epochs and then follows
a cosine schedule [22], and the total number of iterations is 1800 during adaptation. Two
global views of 224×224 pixels and eight local views of 96×96 pixels are constructed. For
the evaluation metrics, we use the area under the receiver operating characteristic curve (AU-
ROC) for image-level anomaly detection and pixel-wise AUROC for anomaly localization.
We set λ = 0.05 using a hyper-parameter search λ ∈ {.01, .05, .1, .5,1}.

4.1 Datasets and Experimental Results

MVTec AD dataset [3] contains 15 categories (10 object categories and 5 texture categories)
of industrial images with a total of 3629 anomaly-free training images and 1725 test images
(700× 700 ∼ 1024× 1024 pixels), including a mixture of anomaly-free images and vari-
ous anomaly types. This dataset also contains pixel-level annotations for all defective areas.
In Table 1, we conduct performance comparisons of our method after test-time adaptation
against prior art anomaly detection and localization methods on the MVTec AD dataset. The
competitive baselines include state-of-the-art synthetic anomaly-based [18, 35, 37, 38, 45],
self-supervised, e.g., [28, 43, 46] or transformer-based method [28], and methods transfer-
ring pre-trained representations [8, 29, 32] from ImageNet. The detailed comparison results
on the MVTec AD show that our method surpasses prior art methods and achieves the high-
est average AUROC (98.4% AUROC on image level and 98.2% AUROC on pixel-level)
among all categories for both anomaly detection and localization tasks. It has been shown
in [29] that recent self-supervised anomaly detection methods still lag behind methods us-
ing pre-trained ImageNet with knowledge transfer/distillation. Nevertheless, even though
we initialize our model using DINO weights [5] pre-trained only on unlabeled images, our
method outperforms recent transfer learning methods [29, 32] that benefit from supervised
pre-trained networks on ImageNet. These quantitative results are supported by the qualitative
results of precise anomaly localization in Figure 3 on the MVTec AD test set.
NIH dataset [41] comprises frontal-view X-ray images (1024×1024 pixels) labeled either
as normal or with one or more of the 14 classes of thoracic diseases from 30,805 patients.
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Table 1: Performance comparison with the prior art for anomaly detection (image-level
AUROC %) and localization (pixel-level AUROC %) on the MVTec AD dataset. SA. denotes
synthetic anomaly-based methods. SSL & IN. denote self-supervised methods and models
pretrained on ImageNet (highlighted by ‡). The best average results are in bold.

Carp
et

Grid Lea
the

r

Tile W
oo

d
Bott

le
Cab

le
Cap

su
le

Haz
eln

ut

M
eta

l N
ut

Pill Scre
w

Too
thb

rus
h

Tran
sis

tor

Zipp
er

Overall Average
Method Architecture Textures Objects

Image-Level AUROC (in %)

SA
.

CutPaste (3-way) [18] ResNet18+Upsampling 93.1 99.9 100.0 93.4 98.6 98.3 80.6 96.2 97.3 99.3 92.4 86.3 98.3 95.5 99.4 95.2
FPI [37] Residual Encoder-Decoder 56.0 99.5 91.7 90.2 74.4 90.2 68.0 87.5 86.0 88.4 71.8 61.2 85.8 79.6 97.7 81.9
PII [38] Residual Encoder-Decoder 65.6 100.0 100.0 98.4 91.9 97.6 68.9 84.9 82.7 98.9 86.3 74.7 93.1 90.1 99.8 88.9
NSA [35] Encoder-Decoder,ResNet18 95.6 99.9 99.9 100.0 97.5 97.7 94.5 95.2 94.7 98.7 99.2 90.2 100.0 95.1 99.8 97.2
DRAEM[45] Encoder-Decoder 97.0 99.9 100.0 99.6 99.1 99.2 91.8 98.5 100.0 98.7 98.9 93.9 100.0 93.1 100.0 98.0

SS
L

&
IN

. PaDiM‡ [8] EfficientNet-B5 − − − − − − − − − − − − − − − 97.9
PatchSVDD [43] Convolutional Backbone 92.9 94.6 90.9 97.8 96.5 98.6 90.3 76.7 92.0 94.0 86.1 81.3 100.0 91.5 97.9 92.1
DifferNet‡ [32] AlexNet 92.9 84.0 97.1 99.4 99.8 99.0 95.9 86.9 99.3 96.1 88.8 96.3 98.6 91.1 95.1 94.9
SPADE‡ [29] ResNet-152 98.6 99.0 99.5 89.8 95.8 98.1 93.2 98.6 98.9 96.9 96.5 99.5 98.9 81.0 98.8 96.2
InTra [28] Modified ViT-B/16 98.8 100.0 100.0 98.2 97.5 100.0 70.3 86.5 95.7 96.9 90.2 95.7 100.0 95.8 99.4 95.0
Ours ViT-S/16 100.0 99.7 99.8 99.7 96.3 99.1 95.8 97.6 99.7 99.8 98.1 96.5 98.5 95.9 99.6 98.4

Pixel-Level AUROC (in %)

SA
.

CutPaste (3-way) [18] ResNet-18+Upsampling 98.3 97.5 99.5 90.5 95.5 97.6 90.0 97.4 97.3 93.1 95.7 96.7 98.1 93.0 99.3 96.0
FPI [37] Residual Encoder-Decoder 70.8 94.2 88.3 65.0 71.1 91.8 66.5 95.9 89.8 96.2 62.3 90.4 81.8 78.5 91.8 82.3
PII [38] Residual Encoder-Decoder 97.2 98.9 99.2 98.0 91.1 93.1 70.2 90.2 97.0 95.4 95.3 92.8 81.3 86.9 93.8 92.0
NSA [35] Encoder-Decoder,ResNet18 95.5 99.2 99.5 99.3 90.7 98.3 96.0 97.6 97.6 98.4 98.5 96.5 94.9 88.0 94.2 96.3
DRAEM [45] Encoder-Decoder 95.5 99.7 98.6 99.2 96.4 99.1 94.7 94.3 99.7 99.5 97.6 97.6 98.1 90.9 98.8 97.3

SS
L

&
IN

. PaDiM‡ [8] EfficientNet-B5 99.1 97.3 99.2 94.1 94.9 98.3 96.7 98.5 98.2 97.2 95.7 98.5 98.8 97.5 98.5 97.5
PatchSVDD [43] Convolutional Backbone 92.6 96.2 97.4 91.4 90.8 98.1 96.8 95.8 97.5 98.0 95.1 95.7 98.1 97.0 95.1 95.7
SPADE‡ [29] ResNet-152 97.5 93.7 97.6 87.4 88.5 98.4 97.2 99.0 99.1 98.1 96.5 98.9 97.9 94.1 96.5 96.5
RIAD [46] U-Net [30] 96.3 98.8 99.4 89.1 88.8 98.4 84.2 92.8 96.1 92.5 95.7 98.8 98.9 87.7 97.8 94.2
InTra [28] Modified ViT-B/16 99.2 98.8 99.5 94.4 88.7 97.1 91.0 97.7 98.3 93.3 98.3 99.5 98.9 96.1 99.2 96.6

Ours ViT-S/16 99.2 98.4 99.4 97.6 97.0 97.6 98.2 98.6 98.3 98.6 98.5 99.3 98.1 95.1 99.1 98.2

Table 2: Performance comparison with recent synthetic anomaly augmentation-based
methods for anomaly localization (pixel-level AUROC %), and standard error across five
different random seeds on the NIH Chest X-ray dataset.

CutPaste [18]

PaDiM [8]
FPI [37]

Ours w/o TTA

Ours

Pixel-Level Anomaly Localization AUROC (in %) Methods Ablation for TTA
Male ♂ 52.6±1.3 54.2±0.8 63.4±0.9 70.8±0.8 72.4±0.6
Female ♀ 51.8±1.2 53.8±0.9 62.9±1.1 70.4±0.9 72.7±0.7

The training set contains 50,500 anomaly-free X-ray images, and the test set includes 25,595
X-rays (15,735 normal and 9,860 abnormal images). The test set contains rough bounding
box annotations of anomalies for 880 X-ray images (503 for male and 377 for female pa-
tients). In Table 2, we show the generalization capability of our method beyond industrial
images. We provide additional quantitative results by comparing our method against the
recent synthetic anomaly augmentation-based methods [8, 18, 37] for anomaly localization
task on the NIH Chest X-rays [41]. The competitive self-supervised method, FPI [37], per-
forms well on this task by using Poisson image editing [27] designed for localizing more
subtle anomalies. Nonetheless, our method trained with the proposed attention-guided syn-
thetic anomaly notably outperforms the second-best method, FPI [37], (∼ 9% pixel-level
AUROC) and creates more task relevant synthetic anomalies.

4.2 Ablation Studies

We investigate the impact of test-time adaptation (TTA) on the final model’s performance
by comparing our trained model adapted with various TTA methods: TENT [40], pseudo
label (PL) [16], and a variant of our method without any adaptation (Ours w/o TTA). We
use the same architecture and hyperparameters for a fair comparison across all the baselines.
We only update the parameters of the classification projection head and modulate the layer
normalization parameters of the ViT encoder while other architecture parameters remain
unaffected. The experimental results on the MVTec AD (Table 3) demonstrate that our final
model using TTA scheme (Ours) outperforms the other baselines, e.g., TENT optimized
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Figure 3: Anomaly localization examples from our method before test-time adaptation. The
results are superimposed on the test images on the MVTec AD dataset. The green boundary
denotes the ground-truth anomalies.

Table 3: Ablation studies on the TTA and augmentation strategies on the MVTec AD.

Ours w TENT

Ours w PL
Ours w/o TTA

Ours w/o multi-crop

Aug-CutPaste

Aug-NSA
Aug-FPA

Ours

Tasks Ablations for TTA Ablations for Augmentation Strategy
Image-Level AUROC (in %) 97.7 97.5 97.2 96.4 95.3 97.3 90.2 98.4
Pixel-Level AUROC (in %) 97.6 97.4 97.2 97.2 96.1 96.4 92.1 98.2

by the entropy distribution of image classification. In addition, together with the results in
Table 2, it is verified that an adapted model using the TTA scheme can yield performance
gain solely compared to a model without adaptation (Ours w/o TTA).

Furthermore, we evaluate the effect of the data augmentation for creating synthetic anoma-
lies by using different augmentation methods (Aug-CutPaste [18], Aug-NSA [35], and Aug-
FPA [37]) during model training on source data. We use the same TTA setup for all baselines.
The superior results in Table 3 over current augmentation methods, e.g., CutPaste [18], verify
that focusing on salient image regions and alleviating the unfounded assumption of uniform
relevance of patches, we can generate more realistic synthetic anomalies. Moreover, adding
a multi-crop scheme can improve the model performance without the noticeable overhead.

5 Conclusion
We propose a transformer-based method based on a new self-supervised proxy task for
anomaly detection and localization. We leverage the attention map of a transformer to ac-
count for the non-uniform relevance of patches for creating synthetic anomalies, simulating
natural spatial irregularities. Furthermore, we adopt test-time adaptation to reduce the dis-
tributional differences between training and test data based on the transformer’s attention
entropy statistics, yielding better generalization to detect and localize real anomalies.

The rationale behind the proposed synthetic anomaly is that most anomalous categories,
e.g., defects’ types, are not random and reside within salient foreground objects. Nonethe-
less, a limitation that remains is that sometimes salient regions generated by the transformer
attention map have some randomness. This may deteriorate the distributional statistics align-
ment of attention entropy used for test-time adaptation. Our future work focuses on address-
ing this problem. Furthermore, this paper opens up a few interesting directions for future
research. First, we aim to create more realistic and diverse synthetic anomalies to further
improve our method’s generalizability. Second, we explore different supervisory signals
used for test-time adaptation [40, 47], which can be complementary to ours.
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