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- Vision transformers (ViTs) are largely overlooked for anomaly detection and
segmentation tasks.

- Compared with fully convolutional networks, ViTs offer higher representation power
due to their global receptive field.

- Recent self-supervised anomaly detection methods still lag behind methods using pre-
trained ImageNet with knowledge transfer/distillation

Our contributions

- We focus on the attention mechanism in the transformer and propose a simple yet
effective attention-guided cut-and-paste data augmentation for creating synthetic
anomalies using only nominal training data.

- To alleviate the mismatch between test and training data (e.g., real and synthetic
anomalies), we adopt a test-time adaptation scheme to match their class-aware
distributional statistics associated with the transformer’s attention entropy.

- We show consistent performance improvements over current synthetic anomaly-based
methods for anomaly detection and localization on the challenging benchmarks of the
MVTec AD and the NIH Chest X-rays.

Attention-guided synthetic anomalies

- Motivation: Most anomalies, e.g., defect categories, are around the salient object.

- Idea: We create synthetic anomalies that are more relevant to the task by focusing on
salient object regions derived from the self-attention mechanism of transformer.

- The ViT's attention map guides sampling of the informative locations to cut and paste
patches, yielding a more realistic approximation of real anomalies.

- By varying the size, aspect ratio, and color of the local patch, our augmentation creates a
more diverse compared to SOTA synthetic anomaly-based methods.

- Proxy Task: The model is trained using the proxy task of detecting and localizing
synthetic anomaly constructed via attention-guided augmentation Att(-) and
formulated as a binary classification and segmentation setup.

- The model consists of a ViT encoder f, which is initialized from a selt-supervised
method, DINO weights, and multi-layer perceptron (MLP) projection head g for image-
level classification, and a set of learnable weights for multi-head attention maps.

- We define the training objective using cross-entropy loss CE for the image-level binary
classifier in detecting synthetic anomalies from a set of anomaly-free training images X*“
as follows:
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Proposed method

The proposed method is a three-stage framework:
.

Supervised Training

Offline

Online
Test-Time Adaptation Statistics Summarization

- NIH Chest X-ray dataset comprises frontal-view X-ray images (1024 X 1024 pixels) labeled either as normal
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The proxy task formulated as supervised training to detect and localize attention-guided synthetic anomalies
generated from only nominal training data;

Offline statistics summarization (the class-aware mean and second central moment associated with transformer
attention entropy) for the source training data;
Test-time adaptation, where we minimize the discrepancy of the distributional statistics for attention entropy
between training and test data.
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Qualitative results

Anomaly localization results from our method superimposed on the test images on the
MVTec AD dataset. The green boundary denotes the ground-truth anomalies.
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The t-SNE visualization of the learned features (before the projection head) on the
MVTec AD dataset. The green dots represent nominal features for four categories.

Results demonstrate well-separated feature distribution (normal vs. anomaly).
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Our method achieves the highest average AUROC on the MVTec AD (98.4% AUROC on
the image level and 98.2% AUROC on the pixel level) compared to other baselines.

Our method outperforms the CutPaste method and second-best method by a gain of
~20% and +8.7% pixel-level AUROC on the NIH dataset.

or with one or more of the 14 classes of thoracic diseases. The training set contains 50,500 anomaly-free X-
ray images. The test set contains rough bounding box annotations of anomalies for 880 X-ray images (503
for male and 377 for female patients).
MVTec AD dataset is composed of 15 categories (5 textures and 10 object categories) of industrial images
with a total of 3629 anomaly-free training images and 1725 test images (700 X 700 ~ 1024 X 1024 pixels),

including a mixture of anomaly-free images and various anomaly types. This dataset also contains pixel-

level annotations for all defective areas.
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Method Textures Objects
Image-Level AUROC (in %)
CutPaste (3-way) [18] 93.1 99.9 100.0 934 98.6 98.3 80.6 96.2 97.3 99.3 924 86.3 98.3 95.5 99 .4 95.2
FPI [37] 56.0 99.5 91.7 90.2 74.4 90.2 68.0 87.5 86.0 88.4 71.8 61.2 85.8 79.6 97.7 81.9
PII [38] 65.6 100.0  100.0 98.4 91.9 97.6 68.9 84.9 82.7 98.9 86.3 74.7 93.1 90.1 99.8 88.9
NSA [35] 95.6 99.9 99.9 100.0 97.5 97.7 94.5 95.2 94.7 98.7 99.2 90.2 100.0 95.1 99.8 97.2
DRAEM|45] 97.0 99.9 100.0 99.6 99.1 99.2 91.8 98.5 100.0 98.7 98.9 939 100.0 93.1 100.0 98.0
Ours 100.0 99.7 99.8 99.7 963 99.1 95.8 97.6 99.7 99.8 98.1 96.5 98.5 95.9 99.6 98.4
Pixel-Level AUROC (in %)
CutPaste (3-way) [18] 98.3 97.5 99.5 90.5 95.5 97.6 90.0 97.4 97.3 93.1 95.7 96.7 98.1 93.0 99.3 96.0
FPI [37] 70.8 94.2 88.3 65.0 71.1 91.8 66.5 95.9 89.8 96.2 62.3 904 81.8 78.5 91.8 82.3
PII [38] 97.2 98.9 99.2 98.0 9l1.1 93.1 70.2 90.2 97.0 95.4 95.3 928 81.3 86.9 93.8 92.0
NSA [35] 95.5 99.2 99.5 99.3 90.7 98.3 96.0 97.6 97.6 98.4 98.5 96.5 94.9 88.0 94.2 96.3
DRAEM [45] 95.5 99.7 98.6 99.2 964 99.1 94.7 94.3 99.7 99.5 97.6 97.6 98.1 90.9 98.8 97.3
Ours 99.2 98.4 994 976 970 97.6 98.2 98.6 98.3 98.6 98.5 993 98.1 95.1 99.1 98.2
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Pixel-Level Anomaly Localization AUROC (in %) Methods Ablation for TTA
Screw Toothbrush Bottle Grid Male & 52.6+1.3 54.24+0.8  63.440.9 70.8+0.8 72.4+0.6
Female 9 51.8+1.2 53.8409  62.9+1.1 70.4+0.9 72.7+0.7
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Limitation and future work

- Limitation: Sometimes, salient regions generated by the transformer attention map have
some randomness. This may deteriorate the distributional statistics alignment of

attention entropy used for test-time adaptation.

- As the future work, we aim to create more realistic and diverse synthetic anomalies to
further improve our method’s generalizability.




