

Anomaly Detection and Localization Using Attention-Guided Synthetic Anomaly and Test-Time Adaptation

Motivation

- Vision transformers (ViTs) are largely overlooked for anomaly detection and segmentation tasks.
- Compared with fully convolutional networks, ViTs offer higher representation power due to their global receptive field.
- Recent self-supervised anomaly detection methods still lag behind methods using pretrained ImageNet with knowledge transfer/distillation

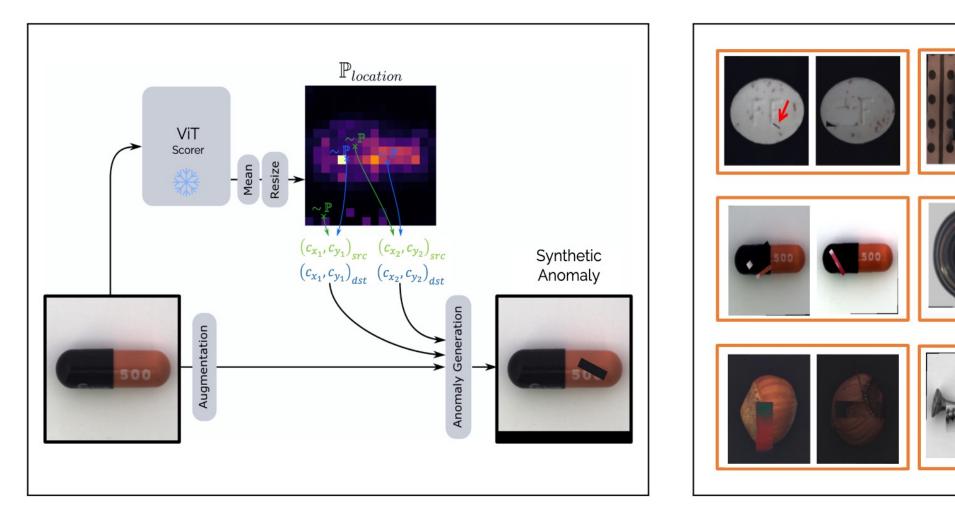
Our contributions

- We focus on the attention mechanism in the transformer and propose a simple yet effective attention-guided cut-and-paste data augmentation for creating synthetic anomalies using only nominal training data.
- To alleviate the mismatch between test and training data (e.g., real and synthetic anomalies), we adopt a **test-time adaptation scheme** to match their **class-aware** distributional statistics associated with the transformer's attention entropy.
- We show consistent performance improvements over current synthetic anomaly-based methods for anomaly detection and localization on the challenging benchmarks of the MVTec AD and the NIH Chest X-rays.

Attention-guided synthetic anomalies

- Motivation: Most anomalies, e.g., defect categories, are around the salient object.
- Idea: We create synthetic anomalies that are more relevant to the task by focusing on
- salient object regions derived from the **self-attention mechanism** of transformer. - The ViT's attention map guides sampling of the **informative locations** to cut and paste
- patches, yielding a more realistic approximation of real anomalies. - By varying the size, aspect ratio, and color of the local patch, our augmentation creates a more diverse compared to SOTA synthetic anomaly-based methods.
- Proxy Task: The model is trained using the proxy task of detecting and localizing synthetic anomaly constructed via attention-guided augmentation $Att(\cdot)$ and formulated as a binary classification and segmentation setup.
- The model consists of a ViT encoder f, which is initialized from a self-supervised method, DINO weights, and multi-layer perceptron (MLP) projection head g for imagelevel classification, and a set of learnable weights for multi-head attention maps. - We define the training objective using cross-entropy loss CE for the image-level binary classifier in detecting synthetic anomalies from a set of anomaly-free training images X^{u} as follows:

$$\mathcal{C}_{\mathrm{Att}} = \frac{1}{2|X^{u}|} \sum_{\mathbf{x} \in X^{u}} \left[\mathbb{CE} \left(g\left(f\left(\mathbf{x} \right) \right) \right), 0 \right) + \mathbb{CE} \left(g\left(f\left(\mathrm{Att} \left(\mathbf{x} \right) \right) \right), 1 \right)$$

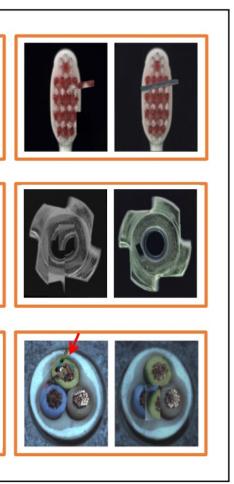


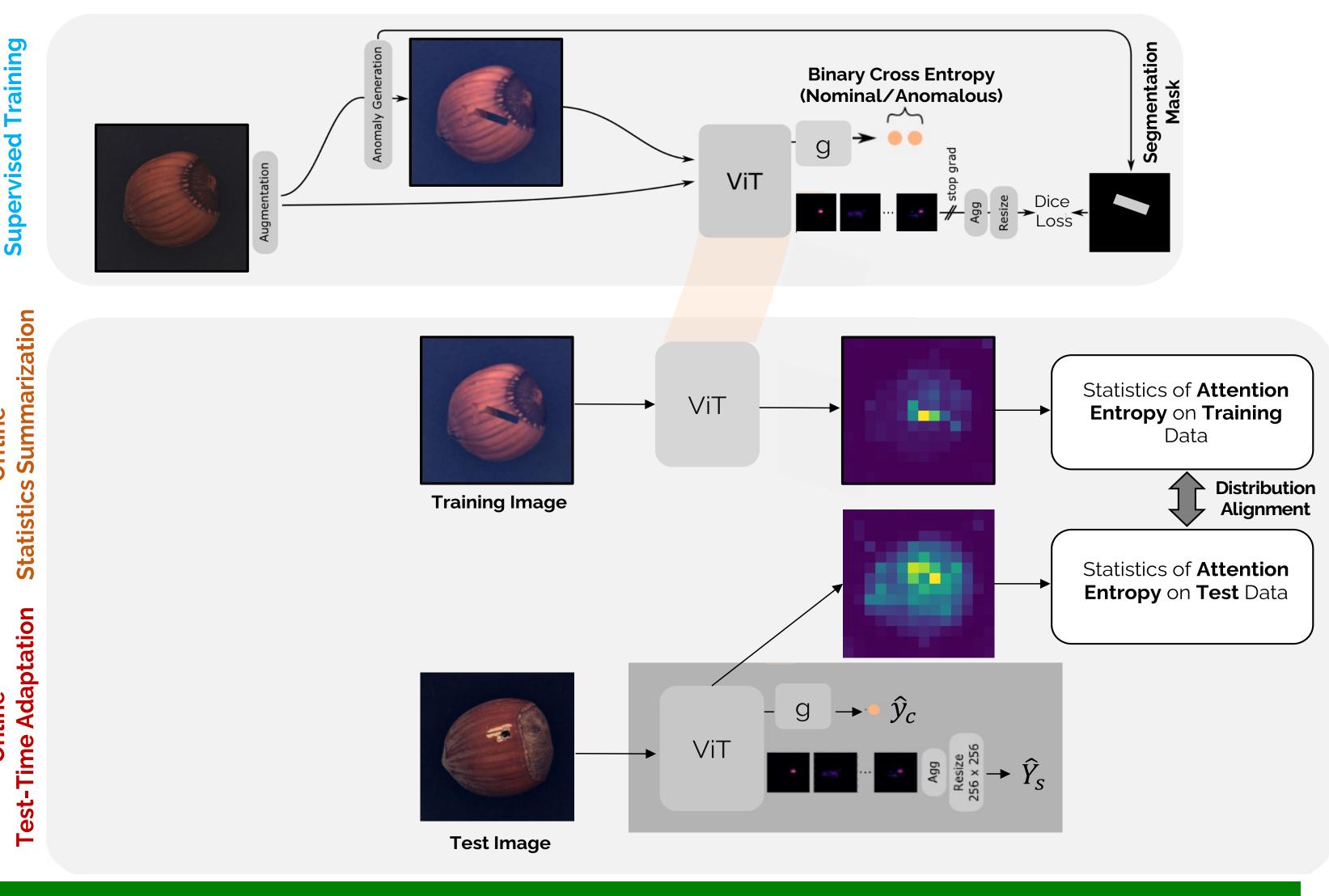
Behzad Bozorgtabar^{1,2}, Dwarikanath Mahapatra³, Jean–Philippe Thiran^{1,2} ² Radiology Department, CHUV, Switzerland ³ Inception Institute of AI (IIAI), UAE ¹LTS5, EPFL, Switzerland

Proposed method

The proposed method is a three-stage framework:

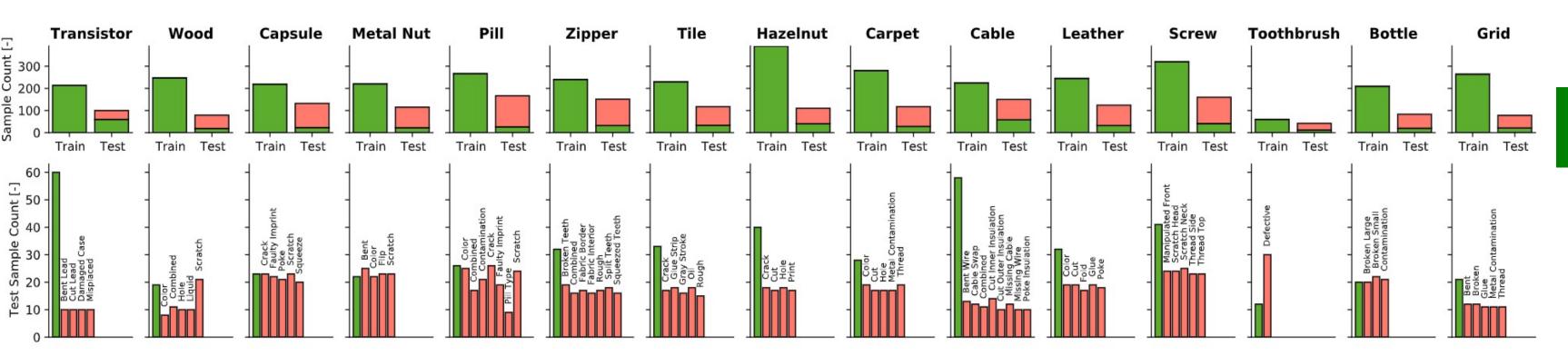
- The proxy task formulated as supervised training to detect and localize attention-guided synthetic anomalies generated from only nominal training data;
- II. Offline statistics summarization (the class-aware mean and second central moment associated with transformer **attention entropy**) for the source training data;
- III. Test-time adaptation, where we minimize the discrepancy of the distributional statistics for attention entropy between training and test data.

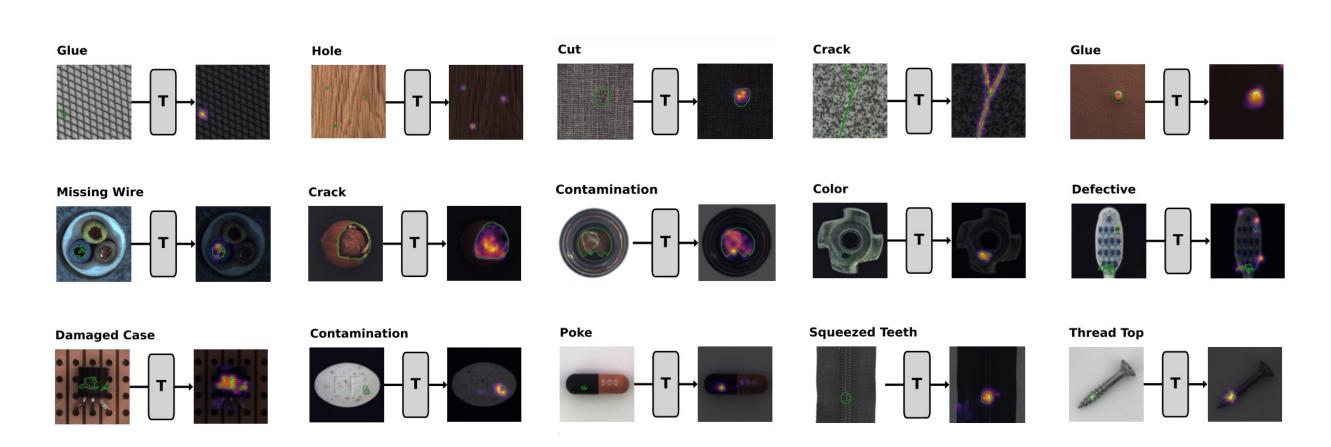




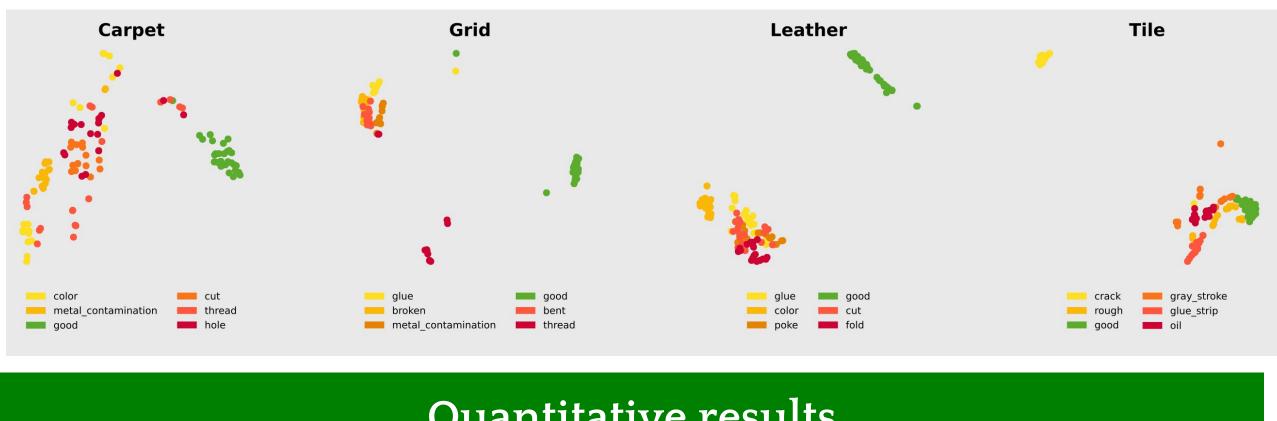
Datasets

- NIH Chest X-ray dataset comprises frontal-view X-ray images (1024 × 1024 pixels) labeled either as normal or with one or more of the 14 classes of thoracic diseases. The training set contains 50,500 anomaly-free Xray images. The test set contains rough bounding box annotations of anomalies for 880 X-ray images (503 for male and 377 for female patients).
- **MVTec AD dataset** is composed of 15 categories (5 textures and 10 object categories) of industrial images with a total of 3629 anomaly-free training images and 1725 test images (700 × 700 ~ 1024 × 1024 pixels), including a mixture of anomaly-free images and various anomaly types. This dataset also contains pixellevel annotations for all defective areas.





The t-SNE visualization of the learned features (before the projection head) on the MVTec AD dataset. The green dots represent nominal features for four categories. Results demonstrate well-separated feature distribution (normal vs. anomaly).



~20% and +8.7% pixel-level AUROC on the NIH dataset.

	Carpet	Grid	Leather	THE	Nood	Bottle	cable	Capsule	Hatehut	,		Screw	Toothbrush	Transistor	Lipper	Overall A
Method		Tex	tures							Obj	jects					
						Ima	ge-Level	AUROC	(in %)							
CutPaste (3-way) [18]	93.1	99.9	100.0	93.4	98.6	98.3	80.6	96.2	97.3	99.3	92.4	86.3	98.3	95.5	99.4	95.2
FPI [37]	56.0	99.5	91.7	90.2	74.4	90.2	68.0	87.5	86.0	88.4	71.8	61.2	85.8	79.6	97.7	81.9
PII [38]	65.6	100.0	100.0	98.4	91.9	97.6	68.9	84.9	82.7	98.9	86.3	74.7	93.1	90.1	99.8	88.9
NSA [35]	95.6	99.9	99.9	100.0	97.5	97.7	94.5	95.2	94.7	98.7	99.2	90.2	100.0	95.1	99.8	97.2
DRAEM[45]	97.0	99.9	100.0	99.6	99.1	99.2	91.8	98.5	100.0	98.7	98.9	93.9	100.0	93.1	100.0	98.0
Ours	100.0	99.7	99.8	99.7	96.3	99.1	95.8	97.6	99.7	99.8	98.1	96.5	98.5	95.9	99.6	98.4
						Pixe	el-Level	AUROC (in %)							
CutPaste (3-way) [18]	98.3	97.5	99.5	90.5	95.5	97.6	90.0	97.4	97.3	93.1	95.7	96.7	98.1	93.0	99.3	96.0
FPI [37]	70.8	94.2	88.3	65.0	71.1	91.8	66.5	95.9	89.8	96.2	62.3	90.4	81.8	78.5	91.8	82.3
PII [38]	97.2	98.9	99.2	98.0	91.1	93.1	70.2	90.2	97.0	95.4	95.3	92.8	81.3	86.9	93.8	92.0
NSA [35]	95.5	99.2	99.5	99.3	90.7	98.3	96.0	97.6	97.6	98.4	98.5	96.5	94.9	88.0	94.2	96.3
DRAEM [45]	95.5	99.7	98.6	99.2	96.4	99.1	94.7	94.3	99.7	99.5	97.6	97.6	98.1	90.9	98.8	97.3
Ours	99.2	98.4	99.4	97.6	97.0	97.6	98.2	98.6	98.3	98.6	98.5	99.3	98.1	95.1	99.1	98.3

Pixel-Level Anomaly Localization AU Male or Female

- Limitation: Sometimes, salient regions generated by the transformer attention map have some randomness. This may deteriorate the distributional statistics alignment of attention entropy used for test-time adaptation.

further improve our method's generalizability.

Qualitative results

Anomaly localization results from our method superimposed on the test images on the MVTec AD dataset. The green boundary denotes the ground-truth anomalies.

Quantitative results

- Our method achieves the highest average AUROC on the MVTec AD (98.4% AUROC on the image level and **98.2%** AUROC on the pixel level) compared to other baselines. - Our method outperforms the CutPaste method and second-best method by a gain of

	CutPaste [18]	PaDiM ^[8]	FPI [37]	Ours wlo TTA	Ours	
JROC (in %)		Methods	Ablation for TTA			
	52.6±1.3	$54.2{\pm}0.8$	$63.4{\pm}0.9$	$70.8{\pm}0.8$	72.4±0.6	
	$51.8{\scriptstyle\pm1.2}$	$53.8{\scriptstyle\pm0.9}$	$62.9{\scriptstyle\pm1.1}$	$70.4{\pm}0.9$	$72.7{\pm}0.7$	

Limitation and future work

As the **future work**, we aim to create more realistic and diverse synthetic anomalies to