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In this supplementary mateirial, we start by introducing implement details on the pro-
posed K-Space Transformer and baseline methods included in our experiments. Then, we
demonstrate ablation study on the influence of a deeper K-Space Transformer and how the
hybrid learning works in the HR Decoder. Finally, we supplement more qualitative compar-
ison results on settings that are not included in Section 4.2 .

6 Implement Details
K-Space Transformer is implemented with 4 Encoder layers, 4 Low-Resolution Decoder
layers and 6 High-Resolution Decoder layers. Each encoder layer is equipped with a four-
head self-attention layer and a feed forward network; each LR decoder layer is equipped
with a four-head cross-attention layer, a four-head self-attention layer and a feed forward
network; and each HR decoder layer is equipped with a four-head cross-attention, a feed
forward network and a refinement module. The backone of refinement module consists of
5 convolution layers with leaky ReLU activations between. The first four layers has 64
filters of 3×3 kernel; while the last layer has 2 filters of 3×3 kernel. Necessary prediction,
embedding and fft/ifft layers are inserted before and after the convolutions for transformation
between k-space and image domain. By default, the embedding layers, prediction layers and
feed forward networks mentioned in this paper are two-level MLPs with ReLu activations
between. Following previous works [4, 7, 8, 21, 25], we treat the input and output complex
MR signals as double channels, i.e., real and imaginary. Features vectores and 2D positional
encodings mentioned in Section 3 are set with the same dimensionality d = 256.

We adopt pixel-wise loss between reconstruction I and groundtruth Igt in image domain,
and apply deep supervision [13] on each layer of LR and HR decoders : L= ∑i ∥Ii −Igt∥2,
where i indicates the layer depth. We train K-Space Transformer with AdamW optimizer
and cosine annealing schedule, setting the initial learning rate as 5×10−4. Inspired by [29],
we adopt Pre-LN architecture to save warm-up stage. As the HR reconstruction depends on
the LR decoder output (refer to Section 3.3), we find it helpful to stop the gradients from HR
decoder outputs in early epochs, i.e., only update the LR decoder. Training is conducted on
4 RTX 3090.

Other Baseline Approaches. We implement a standard U-Net [20] with data consistency
layer before the final output for U-Net and K U-Net, which follows the same architecture
as [8]. We train the network with the same objective function and learning rate as our
methods but adopt an Adam optimizer. We implement D5C5 [21] according to its official
configuration for 2D images reconstruction: a cascade network of 5 CNNs, each equipped
with 5 layers and a data consistency layer. We train it with the same hyper-parameters as
U-Net. For Deep ADMM [31], SwinMR [10] and OUCR [7], we adopt their official source
codes and default hyper-parameters that are publicly available or provided by the authors.

7 Influence of Network Depth
We investigate the effect of layer depth in K-Space Transformer by increasing the depth of
Encoder, LR Decoder and HR Decoder respectively and evaluate under Gaussian sampling,
5x acceleration. As demonstrated in Figure 6, increasing depth consistently improve the net-
work performance in all three modules. Though we conjecture our model may benefit from
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Figure 6: The performance influence of increasing module depth.

even deeper architecture, we take a default setting as 4 Encoder layers, 4 Low-Resolution
Decoder layers and 6 High-Resolution Decoder layers to balance the computational cost.

Figure 7: The speed influence of increasing module depth.

On Reconstruction Speed. Here, we evaluate the reconstruction time, as expected, deeper
networks tend to incur longer processing time, shown in Figure 7. For example, depending
on the depth of the HR decoder, the average inference time for each slice could range from
13.6ms to 22.6ms. By comparison, it’s significantly faster than Deep ADMM (around 1s)
and traditional CS-based methods (up to hundreds of seconds) and comparable to SwinMR
(around 18ms), and only slightly slower than the existing CNN-based methods (a few mil-
liseconds). However, we believe the processing speed of our model is sufficient for real-time
imaging, thus its remarkable performance improvement on high acceleration settings should
be more valuable to improve the patients’ scanning experience and reduce medical cost in
clinical application.

8 Effectiveness of Hybrid Learning

We have shown that image domain refinement does provide complementary information to
k-space decoding in Section 4.3 . Here, we further investigate how the alternating process
works in the hybrid learning. After evaluating the deep supervised reconstructed results
of each HR decoder layer under Gaussian sampling, 5x acceleration (shown in Figure 8),
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Figure 8: Evaluation on deep supervised reconstruction from each k-space decoding(denoted
as Dec) and image refinement module(denoted as RM) in the HR Decoder.

we observe that PSNR increases consistently throughout the alternation between k-space
decoding and image domain refinement, and this finding is consistent across all the settings.

9 Supplementary Qualitative Comparison with Baselines
We show more qualitative comparisons that are not included in Section 4.2 . As can be seen
from Figure 9 and Figure 10, on settings like 2.5x uniform sampling or 10x Gaussian sam-
pling, our method achieve remarkably higher reconstruction quality over other approaches,
demonstrating the robustness to more significant aliasing artifacts. While on settings with
less structure loss and aliasing artifacts, the top methods perform quite close.

Figure 9: Supplementary qualitative comparison on uniform sampling settings.
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Figure 10: Supplementary qualitative comparison on Gaussian sampling settings.


