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Abstract
Multi-stage architectures have been widely used for image motion deblurring and

achieved significant performance. Previous methods restore the blurred image by obtain-
ing the spatial details of the blurred input image. However, the blurred image cannot
provide accurate high-frequency details, degrading the overall deblurring performance.
To address this issue, we propose a novel dual-stage architecture that can fully extract
the high-frequency information of the blurred images for reconstructing detailed tex-
tures. Specifically, we introduce a supervised guidance mechanism that provide precise
spatial details to recalibrate the multi-scale features. Furthermore, an attention-based fea-
ture aggregator is proposed to adaptively fuse influential features from different stages
in order to suppress redundant information from the earlier stage passing through to the
next stage, allowing efficient multi-stage architecture design. Extensive experiments on
GoPro and HIDE benchmark datasets show the proposed network has the state-of-the-
art deblurring performance with low computational complexity when compared to the
existing methods.

1 Introduction
Image deblurring aims at recover a sharp image from the blurred one with the necessary tex-
ture structure and high-frequency details [7], which is caused by camera shake, freely mov-
ing objects or defocus, resulting in visual discomfort and degraded image quality. Therefore,
deblurring is an essential step and widely gets attention in the field of image processing,
computer vision, pattern recognition, and etc.

Blind motion deblurring is a highly ill-posed problem with infinite feasible solutions.
Most traditional methods [5, 10, 18, 26] use mathematical models or empirical observations
and then manually design image priors to make images sharp. However, designing such
priors does not generalize to real-world images of different scenes. To address this problem,
recent deep-learning based methods have achieved great performance by directly learning
the complex relationships between blurred and sharp images from large-scale data.

Single image deblurring is a position-sensitive task that requires pixel-to-pixel correspon-
dence between blurred and sharp images. As a result, it is challenging to remove unwanted
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degraded image content while preserving the natural edges and detailed texture. Existing
CNN-based methods [1, 12, 20, 24, 31, 32] usually employ either high-resolution extrac-
tion pipelines or encoder-decoder sub-networks to increase the overall performance. In fact,
previous researches employing high-resolution extraction pipelines [24, 31, 32] yield more
accurate spatial details since there are no downsampling operations. However, such pipelines
are ineffective in gathering contextual information due to the limited receptive fields. More-
over, the encoder-decoder architecture [1, 12, 20] utilizes a top-down and bottom-up manner
to gradually map the input from high resolution to low resolution and then apply a reverse
mapping to the original resolution. These methods can learn broad contextual information,
but fine spatial details may also be lost, degrading the quality of restoration. Therefore,
various variant architectures are introduced to restore the blurred image, and they can be
roughly divided into three categories: multi-scale, multi-temporal and multi-patch architec-
tures. Specifically, Nah et al. [15] proposed a multi-scale architecture to map blurry images
to its sharp counterparts without estimating blur kernels. However, it is difficult to recover
multi-scale information of blurry images due to the lack of receptive field. Park et al. [19]
proposed an encoder-decoder network with the iterative strategy that can capture the non-
uniform blur of the blurred input image repeatedly. However, the over iterations result in
longer inference time, and the blurred input image cannot provide enough high-frequency
information for reconstructing output with accurately detailed texture. Consequently, Zamir
et al. [27] proposed a multi-stage architecture that leverages the advantages of the encoder-
decoder and high-resolution extraction pipeline to learn spatially accurate and contextual-
enriched features. Moreover, the method adopted a multi-patch strategy to obtain more
details of the blurred input image. Despite its effectiveness, obtaining the image content
of each patch through high-resolution extraction pipeline inevitably increases computational
complexity and memory load, which makes it difficult to be applied to time-sensitive scenar-
ios.

To address the aforementioned issues, we check again the bottleneck of multi-stage ar-
chitectures and propose a novel deblurring architecture called Spatial Guided Enhancement
Network (SGENet). We first explore the high-frequency information required for restoring
the image, and found that the predicted images can provide high-frequency components,
which is similar to the sharp images under the constraint of the loss function. Therefore,
we focus on reconstructing detailed textures. Unlike the existing methods [4, 8, 28], which
tried to obtain fine details by preserving the blurred image content, we present a practical
contextual-aware enhancement module (CEM) with a supervised guidance mechanism that
can calibrate semantic features through spatially-accurate predicted images to generate the
detailed texture of output images. Also, other methods [3, 27] adopt a multi-stage architec-
ture to decompose the recovery process into several subtasks, allowing each stage to learn
only the valuable information for that stage. These methods try to aggregate useful fea-
tures by simple summation or concatenation across stages; however, such kind of simple
feature exchange causes redundant information to be erroneously fused, affecting the overall
restoration performance. Inspired by [13], we develop a cross-stage selective aggregation
module (CSAM), which can adjust the receptive field with consideration of incoming fea-
tures from different stages, thereby suppressing the redundant information and only passing
useful semantic features to enrich the features in the next stage.

The main contributions of the proposed method are in three aspects: First, we present a
novel attention-based supervised guided mechanism that can fully exploit the high-frequency
information from the predicted image for precisely generating outputs with detailed texture.
Second, a new cross-stage weight adjustment strategy is introduced to adaptively select and
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reuse features from different stages. This strategy only allows valuable features to pass to
the next stage, ensuring a smooth information exchange for constructing an efficient multi-
stage architecture design. Third, we provide extensive analysis and evaluations on dynamic
scene deblurring benchmarks, demonstrating that our method produces state-of-the-art re-
sults while maintaining low time complexity. In addition, we provide detailed ablation stud-
ies, qualitative results, and generalization tests. The rest of this paper is organized as follows.
The related work is reviewed in Sec. 2. Sec. 3 describes the details of the proposed method.
Experimental results are demonstrated in Sec. 4. Finally, concluding remarks are made in
Sec. 5.

2 Related Work
Motion blur is apparent streaking appeared in a single frame or a sequence of frames due
to rapid movement or long exposure. Many deep learning-based approaches have been pro-
posed with remarkable success, including single-stage and multi-stage architectures. Single-
stage methods usually employ complex network structures to improve the capabilities of the
model. Gao et al. [8] proposed the parameter selective sharing and nested skip-connection
networks, which consist of encoder-decoder networks with shared parameters, thereby re-
ducing memory consumption. However, the overall architecture remains being high time
complexity since the recovery process is iterative. Zhang et al. [29] proposed a spatially-
variant architecture to model the varying motion blur. Kupyn et al. [11] proposed a con-
ditional generative adversarial network based on a feature pyramid with a Wasserstein loss
to generate high-quality deblurred images. Shen et al. [21] introduced a human-aware to
selectively remove the blurring of foreground and background. The multi-stage approaches
stack multiple lightweight sub-networks to decompose the complex task into several solvable
problems. Zhang et al. [28]proposed a deeply stacked hierarchical multi-patch network that
leverages multiple local-to-coarse operations to focus on different scales of a blur. Zamir
et al. [27] proposed a multi-stage progressively restoration network(MPRNet), which con-
sists of two encoder-decoder subnetworks and an original resolution network. However, the
original resolution network performs less efficiently and requires longer computation time.
In addition, MPRNet also presented a supervised attention module (SAM) to improve re-
covering process at each stage. Inspired by [27], the proposed architecture consists of SAM
module and two encoder-decoder sub-networks to facilitate performance. More discussions
can be found in the NTIRE Challenge reports [16, 17].

3 Proposed Method
This section presents the details of the proposed Spatially Guided Enhancement Network
(SGENet) for dynamic image deblurring. Then, we describe the proposed Contextual-Aware
Enhancement Module (CEM) and finally illustrate our Cross-Stage Selective Aggregation
Module (CSAM).

3.1 Network Architecture
A schematic of the proposed SGENet is shown in Fig. 1, which consists of two encoder-
decoder sub-networks for restoring blurred images. The encoder-decoder subnetwork is
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Figure 1: The framework of the proposed deblurring network.

based on U-Net [20] with the following modifications. First, a dilated convolution mod-
ule [25] is added with a recursive residual design [6] to extract multi-scale features. Second,
the feature maps at U-Net skip connections are processed with the proposed CEM, which is
capable of synthesizing the detailed texture of the restored image. Finally, instead of simply
stacking multiple stages, we incorporate a cross-stage selective aggregation module between
the two stages, which can adjust the weights of different sub-networks adaptively to select
useful feature representations.

Most previous methods [23, 28] attempt to restore images by extracting features from
blurred input images. However, the high-frequency information of sharp images is quite
diverse, complex, and difficult to learn. Therefore, more accurate reference images are
required for the image reconstruction. Compared with the blurred input image, the pre-
dicted image contains precise high-frequency information and it would be more effective to
fully exploit the spatial details of the predicted image to recover the image. Specifically,
the proposed SGENet accesses the input image and predicts the image at each encoder-
decoder scale. Given any stage t or scale s, the proposed model predicts the residual im-
age Rt

s ∈ RH×W×3 and adds the degraded image Dt
s ∈ RH×W×3 up to obtain restored image

It
s ∈ RH×W×3 defined as:

It
s = Dt

s +Rt
s (1)

After that, we adopt the loss function shown in following equation to allow the predicted
images to preserve accurate high-frequency information such as the detailed texture and
edges. Then, we apply the predicted image as an attention map to precisely recalibrate the
intermediate stage features to reconstruct outputs with detailed textures.

L =
2

∑
t=1

3

∑
s=1

[
Lchar(It

s,Y )+λLedge(It
s,Y )

]
(2)

where Y represents the ground truth image. Lchar and Ledge are Charbonnier loss [2] and edge
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Figure 2: The architecture of contextual-aware enhancement module (CEM)

loss [9]:

Lchar =

√
∥It

s −Y∥2 + ε2 (3)

Ledge =

√
∥Lap(It

s)−Lap(Y )∥2 + ε2 (4)

In addition, the constant ε is empirically set to 10−3, where Lap denotes the Laplacian
operator; The parameter λ in Eq. 2 is set to 0.05 to balance the loss terms.

3.2 Contextual-aware Enhancement Module (CEM)
Recent multi-stage networks for image deblurring [15, 27] typically adopt a single-scale fea-
ture pipeline to recover the spatial details and texture structure from input blurred images.
However, such a pipeline attempts to extract high-resolution images leads to longer infer-
ence runtime. We introduce a contextual-aware enhancement module shown in Fig. 2, which
can provide valuable supervised high-frequency information at each scale of the encoder-
decoder to enhance multi-scale features progressively. Furthermore, with the help of the
supervised guidance mechanism, we generate attention maps to suppress unfavorable fea-
tures at the current scale, allowing only beneficial features to propagate to the next step,
achieving significant performance gains.

Specifically, we first take the incoming features Fs and Fs−1 from different scales to
produce multi-scale features Fc by 3×3 convolution and ReLU activation, where {Fs,Fc} ∈
RH×W×C, Fs−1 ∈ R

H
2 ×W

2 ×C, H ×W ×C denote the size of feature maps. Then, we obtain the
predicted residual image Rt

s through Eq. 1 to generate residual features FR ∈ RH×W×C and
attention maps M ∈ RH×W×C using 3× 3 convolution and sigmoid activation, respectively.
Next, we fuse the residual features FR with the multi-scale features Fc by concatenation
and apply the attention maps M as a guided filter to obtain fine-detailed output features
Fre f ined ∈ RH×W×C. Finally, the output features would pass to the subsequent processing for
further recovery.

3.3 Cross-stage Selective Aggregation Module (CSAM)
As shown in Fig. 3, the proposed CSAM is composed of two steps such as aggregate and
select. The aggregate operation generates semantic features by fusing features of different
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Figure 3: Schematic for the cross-stage selective aggregation module (CSAM)

stages; the select operation reweights the semantic features using an attention mechanism to
select valuable information. CSAM takes the input features Fi from different stages, where
i ∈ {1,2,3}, then combine these features to obtain semantic features Fsemantic. After that, we
employ the global average pooling (GAP) to generate channel-wise statistics as w:

Fsemantic =
3

∑
i=1

Fi (5)

w =
1

H ×W

H

∑
p=1

W

∑
q=1

Fsemantic(p,q) (6)

where Fsemantic ∈ RH×W×C, and w ∈ R1×1×C. We split the feature vector w into 3 feature
representations z ∈ R1×1×C

3 , then pass through the multi-layer perceptron (MLP) module to
learn the correlations in the latent space. Finally, we generate the attention feature vector
using softmax activation to adaptively recalibrate the features of different stages as follow:

Yi = Fi ×σso f tmax(θ(zi)) (7)

where θ and Yi denotes sets of MLP and output features, respectively.

4 Experiments
To demonstrate the advantages of our proposed deblurring framework, we evaluate the per-
formance by comparing it with the state-of-the-art methods on two popular datasets, and
conduct further ablation studies to analyze the contributions of individual components of our
proposed network.

4.1 Dataset and implementation details
As shown in [4, 22, 27], we use the GoPro [15] dataset that contains 3,214 pairs of blurred
and sharp images with the resolution of 720×1280, where 2,103 image pairs are for training
and 1,111 pairs for evaluation. To demonstrate the generalization of our model, we take our
GoPro [15] trained model and directly apply it to the test images of the HIDE [21] dataset,
which consists of 2,025 images collected for human-aware motion deblurring.

The proposed framework is end-to-end trainable and has no pretraining process. Our
SGENet uses 2 RDMs with 96, 120, 144 channels at each scale of the encoder-decoder. We
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Figure 4: Qualitative comparisons among state-of-the-art method and our proposed SGENet
on the GoPro test dataset.

first randomly crop the input image into 256×256 patches and train our model for 3,000
epochs using Adam optimizer with the initial learning rate of 10−4 steadily decreased to
10−7 using the cosine annealing strategy [14]. Horizontal and vertical flips are applied for
data augmentation randomly. Our experiments are conducted on Intel i7-10700KF CPU and
NVIDIA RTX 3090 GPU.

4.2 Performance comparisons

4.2.1 Quantitative Evaluation

We compare our method with the 9 latest approaches [4, 8, 15, 19, 22, 23, 27, 28, 30] on
two popular datasets through the commonly-used metrics, i.e., PSNR and SSIM. The quan-
titative results on GoPro [15] and HIDE [21] datasets are listed in Table 1. For fair compari-
son, the runtime of models is measured using the released code with the image resolution of
720×1280 in the same environment. As shown in Table 1, the proposed SGENet outperforms
other approaches on the GoPro dataset while achieving the fastest runtime. Specifically, the
average PSNR and runtime of SGENet on the GoPro dataset are 32.96 dB and 0.017s, re-
spectively. Our proposed model has 0.3 dB higher and 6.82× faster than the best model
(MPRNet) among these approaches. Furthermore, our method has better performance than
the second-best model (MIMO-UNet) on the GoPro dataset with almost the same inference
time. We also evaluated our methods on the recent HIDE dataset [21] to verify the gen-
eralization ability of our model. As listed in Table 1, the proposed SGENet recorded the
second-best performance in terms of PSNR and SSIM, which shows the robustness of our
proposed method.
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Figure 5: Qualitative comparisons among state-of-the-art method and our proposed SGENet
on the HIDE test dataset.

Dataset GoPro HIDE -
Method PSNR SSIM PSNR SSIM Runtime Params.
DeepBlur [15] 29.23 0.916 25.73 0.873 - 11.7
SRN [23] 30.26 0.934 28.36 0.915 - 6.8
PNN+NSC [8] 30.92 0.942 29.11 0.913 - 2.84
DMPHN [28] 31.20 0.945 29.09 0.924 0.026 21.7
DBGAN [30] 31.10 0.942 28.94 0.915 0.225 11.5
MT-RNN [19] 31.15 0.945 29.15 0.918 0.050 2.6
SAPHNet [22] 31.85 0.948 29.98 0.930 - -
MIMO-UNet [4] 32.45 0.957 29.99 0.930 0.018 16.1
MPRNet [27] 32.66 0.959 30.96 0.939 0.208 20.1
SGENet 32.96 0.961 30.71 0.937 0.017 19.5

Table 1: Evaluation results on the GoPro and HIDE dataset. The best score and second best
are highlighted and underlined. The runtime and parameters are expressed in seconds and
millions.

4.2.2 Qualitative Evaluation

We show the qualitative comparisons with the competing methods on the GoPro and the
HIDE datasets in Figs. 4 and 5, respectively. It can be observed that the results of other
methods still suffer from local region blurring and even producing ringing artifacts, which
destroy the original image contents. In contrast, our method generates the most compara-
ble results to the ground truth images, and our restored images can well recover the global
structure and the sharper detailed textures. In addition, we visualize the output of the pro-
posed CEM unit in Fig. 6 to analyze its contribution. The second and third columns of
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Figure 6: Two examples of visualization using our contextual-aware enhancement module.
(a) Blurred Images. (b) Before enhancement processing. (c) After enhancement processing.
(d) Ground-truth Image. It is showed that the features after CEM enhancement can highlight
the detailed information such as edges and textures.

Fig. 6 shows the feature maps before and after the enhancement process, respectively. It is
clear that the output of the proposed CEM contains detailed textures and sharp edge such
as text and street. Therefore, our SGENet network has strong ability to generate sharper
restored image. In conclusion, both the quantitative and qualitative results demonstrate that
our method achieves superior performance.

Method CSAM CEM PSNR
30.05

1-stage
! 30.24

30.72
! 31.06

! 31.112-stages

! ! 31.32

Table 2: Effectiveness of individual compo-
nents of the proposed SGENet on the GoPro
test dataset.

Method w/o guidance w/ guidance
PSNR 31.15 31.32

Runtime 0.017 0.017

Table 3: Ablation studies on CEM for guid-
ance mechanism.

4.3 Ablation Study

In this section, we conducted experiments to analyze the effectiveness of each component in
our model on the GoPro dataset. We first train our model for 500 epochs and use a single-
stage SGENet without any components as the baseline model. Table 2 demonstrates that
removing the CEM causes a substantial performance drop from 31.32 dB to 31.06 dB, and
from 31.32 dB to 31.11 dB when plugging out the CSAM. Note that the performance gain
increases by a large margin from 30.72 dB to 31.32 dB when employing these two compo-
nents. In addition, we also analyze the effectiveness of the proposed guidance mechanism.
Fig. 2 illustrates the architecture of the proposed CEM with the guidance mechanism, and
the experimental results are listed in Table 3. It shows that the proposed guidance mechanism
can increase performance gain from 31.15 dB to 31.32 dB with nearly the same inference
time. In other words, the proposed guidance mechanism can substantially increase the per-
formance at almost no cost.
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5 Conclusion
This paper proposes a novel spatial guidance enhancement network for single image de-
blurring, which aims at restoring blurred images with accurate spatial details. We develop
the guidance mechanisms to progressively rebuild images by fully exploiting precise high-
frequency information of predicted images. We require these high-level features with flex-
ible information exchange across different stages. To this end, we propose a cross-stage
selective aggregation strategy to adaptively utilize useful feature representations for an effi-
cient multi-stage architecture. Experimental results show the proposed method achieves the
state-of-the-art restoration performance with low time complexity when compared with the
existing methods on two benchmark datasets.
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Matas. Deblurgan: Blind motion deblurring using conditional adversarial networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 8183–8192, 2018.



12 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

[12] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. Deblurgan-v2:
Deblurring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8878–8887, 2019.

[13] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 510–519, 2019.

[14] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[15] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional
neural network for dynamic scene deblurring. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3883–3891, 2017.

[16] Seungjun Nah, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee. Ntire 2020 chal-
lenge on image and video deblurring. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pages 416–417, 2020.

[17] Seungjun Nah, Sanghyun Son, Suyoung Lee, Radu Timofte, and Kyoung Mu Lee. Ntire
2021 challenge on image deblurring. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 149–165, 2021.

[18] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang. Deblurring text images via
l0-regularized intensity and gradient prior. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2901–2908, 2014.

[19] Dongwon Park, Dong Un Kang, Jisoo Kim, and Se Young Chun. Multi-temporal
recurrent neural networks for progressive non-uniform single image deblurring with
incremental temporal training. In European Conference on Computer Vision, pages
327–343. Springer, 2020.

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[21] Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbing Shen, Haibin Ling, Tingfa Xu, and
Ling Shao. Human-aware motion deblurring. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5572–5581, 2019.

[22] Maitreya Suin, Kuldeep Purohit, and AN Rajagopalan. Spatially-attentive patch-
hierarchical network for adaptive motion deblurring. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3606–3615, 2020.

[23] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia. Scale-recurrent net-
work for deep image deblurring. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8174–8182, 2018.

[24] Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Image super-resolution using dense
skip connections. In Proceedings of the IEEE international conference on computer
vision, pages 4799–4807, 2017.



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 13

[25] Boyan Xu and Hujun Yin. Dc-deblur: A dilated convolutional network for single im-
age deblurring. In International Conference on Intelligent Data Engineering and Au-
tomated Learning, pages 234–245. Springer, 2021.

[26] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust motion deblurring. In
European conference on computer vision, pages 157–170. Springer, 2010.

[27] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz
Khan, Ming-Hsuan Yang, and Ling Shao. Multi-stage progressive image restoration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pages 14821–14831, 2021.

[28] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Koniusz. Deep stacked hier-
archical multi-patch network for image deblurring. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5978–5986, 2019.

[29] Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Linchao Bao, Rynson WH Lau,
and Ming-Hsuan Yang. Dynamic scene deblurring using spatially variant recurrent
neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2521–2529, 2018.

[30] Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn Stenger, Wei Liu, and Hong-
dong Li. Deblurring by realistic blurring. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2737–2746, 2020.

[31] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image
super-resolution using very deep residual channel attention networks. In Proceedings
of the European conference on computer vision (ECCV), pages 286–301, 2018.

[32] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense
network for image restoration. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 43(7):2480–2495, 2020.


