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Abstract

Chest X-ray is one of the most popular medical imaging modalities due to its acces-
sibility and effectiveness. However, there is a chronic shortage of well-trained radiol-
ogists who can interpret these images and diagnose the patient’s condition. Therefore,
automated radiology report generation can be a very helpful tool in clinical practice. A
typical report generation workflow consists of two main steps: (i) encoding the image
into a latent space and (ii) generating the text of the report based on the latent image em-
bedding. Many existing report generation techniques use a standard convolutional neu-
ral network (CNN) architecture for image encoding followed by a Transformer-based
decoder for medical text generation. In most cases, CNN and the decoder are trained
jointly in an end-to-end fashion. In this work, we primarily focus on understanding
the relative importance of encoder and decoder components. Towards this end, we an-
alyze four different image encoding approaches: direct, fine-grained, CLIP-based, and
Cluster-CLIP-based encodings in conjunction with three different decoders on the large-
scale MIMIC-CXR dataset. Among these encoders, the cluster CLIP visual encoder
is a novel approach that aims to generate more discriminative and explainable repre-
sentations. CLIP-based encoders produce comparable results to traditional CNN-based
encoders in terms of NLP metrics, while fine-grained encoding outperforms all other en-
coders both in terms of NLP and clinical accuracy metrics, thereby validating the impor-
tance of image encoder to effectively extract semantic information. GitHub repository:
https://github.com/mudabek/encoding-cxr-report-gen

1 Introduction
Chest X-ray is a commonly used medical imaging modality because it covers a wide variety
of diseases occurring in the chest area and the process of X-ray image acquisition is simple
and efficient. However, there is a shortage of skilled radiologists who can interpret data in
a timely manner and this issue became even more apparent during the COVID-19 outbreak.
Automated report generation using machine learning can alleviate the problem of shortage of
radiologists. The goal of automated radiology report generation is to produce an accurate re-
port describing the patient’s condition based on the given X-ray image. This task falls under
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the umbrella of image captioning algorithms. Though there are many existing image cap-
tioning algorithms, they are not directly applicable to the task of report generation. The main
reason is that most of them produce short descriptions of various natural images, whereas
radiology reports usually consist of several sentences describing fairly similar images with
subtle but important differences.

In general, radiology report generation consists of two components: (i) an image en-
coder that produces an informative representation of the given image, and (ii) a medical text
decoder that produces the report based on the information coming from the encoder. Typi-
cally, a Convolutional Neural Network (CNN)-based deep learning architecture [8] is used
for image encoding. Earlier works mostly used a Long Short-Term Memory (LSTM) based
recurrent neural network architecture [4, 5, 10, 11, 15] for decoding, whereas more recent
methods are based on the Transformer architecture [2, 7, 17, 18, 23]. While it is obvious
that image encoding plays a critical role in report generation, surprisingly it has received
very little attention from the research community. Most recent works employ a standard
CNN-based encoder and focus only on the decoder component. In this work, we show that
image encoding plays a critical role in ensuring the accuracy of the generated reports. The
contributions of this work are two fold:

• Compare different image encoding approaches (direct, fine-grained, CLIP, and Cluster-
CLIP) along with multiple decoders to understand the relative importance of encoder
and decoder components.

• Propose a novel cluster CLIP visual encoder (CCVE) that aims to generate more dis-
criminative and explainable representations

2 Related Work
One of the first successful automated radiology report generation systems was based on the
hierarchical LSTM model [10]. In this model, VGG-16 [20] was used as an image encoder
and a hierarchical LSTM with an attention mechanism was used for decoding. The hierar-
chical LSTM approach was further refined in [4, 11] by creating two separate hierarchical
LSTM models (one for normal and the other for abnormal cases). Modifying the image
encoder was shown to improve the performance of the hierarchical LSTM model [15, 25].
While the CNN image encoder was pre-trained on the chest X-ray disease classification task
[15], a special type of pooling operation was introduced in [25]. The common weakness of
LSTM models is the lack of diversity in the generated reports due to possible reasons such
as dataset imbalance and the tendency of LSTM models to overfit. Moreover, their efficacy
was often evaluated based on natural language generation (NLG) metrics, which are not ap-
propriate for the report generation task because even a random retrieval model can achieve
good NLG metric results [1].

Another approach for report generation relies on utilizing existing reports in the database
as templates. Li et. al. [12] created a hybrid model that recurrently chooses a sentence
from a database or generates a new one using LSTM at the report generation stage. Syeda-
Mahmood et. al. [22] used fine-grained template retrieval and achieved the highest NLG
metrics reported thus far. Fine-grained report retrieval has good NLG metrics because it
directly uses reports of radiologists. However, it does not have the ability to generalize
well to cases not present in the database, which is the main weakness of the template-based
approach.
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Figure 1: Illustration of various encoders and decoders used in this study.

Recently, Transformers [23] have gained prominence as the preferred architecture for the
task of report generation. Chen et. al. [2] extracted image features using CNN and generated
sentences using a Transformer decoder enhanced with relational memory. Hou et. al. [7]
simply replaced the encoder of a vanilla Transformer with a DenseNet CNN encoder and
generated reports with a plain Transformer decoder. Wang et. al. [24], Liu et. al. [14],
and Najdenkoska et. al. [18] developed complex architectures incorporating BERT-based
Transformers in various ways into their models. However, most of the existing methods
[2, 4, 7, 10, 12, 13, 18] rely only on a simple CNN encoder trained jointly with a decoder
for extracting information from the image. There is no existing work that analyzes image
encoders in depth and quantifies their impact on the decoder. Hence, it becomes necessary
to study the impact of different encoding strategies, which we have attempted in this work.

3 Proposed Method

Ideally, an image embedding must include all the semantic information that is necessary for
generating the report. This requires training the image encoder and text decoder together in
an end-to-end fashion. One of the issues with jointly training the image encoder and text
decoder is that the cross-entropy loss function does not necessarily force the model to learn
important semantic information for clinically accurate report generation. Rather the model
often learns to generate the most frequent word sequences by focusing on common features
present in most images discarding abnormality detection. With this in mind, we analyze
techniques for more effective image feature extraction and evaluate their relative strengths.

The proposed system for automated radiology report generation is shown in Figure 1.
It consists of image encoder and text decoder modules. Four types of image encoders are
considered: a direct visual encoder (DVE), a fine-grained visual encoder (FVE), a CLIP vi-
sual encoder (CVE), and a cluster CLIP visual encoder (CCVE). FVE has a coarse disease
classifier (CDC) for predicting 14 disease labels and a fine-grained classifier (FGC) for pre-
dicting 410 labels. CVE and CCVE are pre-trained to match the image embedding with the
text embedding of reports. Each visual encoder produces an image embedding and these
embeddings can either be fed individually or jointly to any type of decoder to produce the
report in a recurrent manner.
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3.1 Image Encoding

Direct Visual Encoding (DVE): For direct encoding, we use the DenseNet-121 CNN archi-
tecture and train it end-to-end along with the decoder.
Fine-Grained Visual Encoding (FVE): FVE consists of a coarse disease classifier (CDC)
and a fine-grained classifier (FGC). Coarse disease labels can be automatically extracted
from the radiology reports using the CheXpert library [9]. We obtained fine-grained labels by
enhancing CheXpert with the capability to extract modifiers of the diseases (mild pneumonia,
moderate cardiomegaly, etc.). We used the NLP spaCy library [6] to extract adjective and
noun modifiers of a given disease. As a result, we obtained 410 fine-grained classes in total
(each class occurs at least 100 times in the dataset). We use a ConvNeXt-small [16] CNN
model as CDC and FGC. ConvNeXt-small is a recent state-of-the-art CNN architecture,
which has shown better results in our experiments on the task of CXR image classification in
comparison to other well-known CNN architectures such as DenseNet and ResNet. Feature
embeddings from both CDC and FGC are used as inputs to the transformer decoder.
CLIP Visual Encoding (CVE): CVE relies on contrastive language-image pretraining (CLIP)
[19] to learn the image embedding for a given chest X-ray image. CLIP is a powerful mul-
timodal model that has been trained on 400 million natural image-text pairs on the task of
matching visual and textual embeddings of input data. This pre-trained model is available
on OpenAI’s GitHub page [19]. It consists of an image encoder module (various ResNet or
Vision Transformer (ViT) models) and a text encoder (CLIP Transformer encoder) module.

We further fine-tune the pretrained CLIP model on our chest X-ray dataset by matching
chest X-ray images with their corresponding reports. CLIP’s text encoder can handle only
77 tokens and it uses binary pair encoding tokenization. However, radiology reports directly
tokenized using binary pair encoding are usually longer than 77 tokens. Therefore, we could
not use the radiology report directly as an input to CLIP’s text encoder. Instead, we extract
impression sections from the reports (if present) and use those as text input to CLIP. Im-
pressions are usually one or two sentences long and contain the most important observation.
Thus, the fine-tuned CLIP embedding can be expected to encode the most relevant informa-
tion. After fine-tuning the CLIP model on the chest X-ray dataset, only the CLIP’s visual
encoder is used to obtain the embedding of the given image.
Cluster CLIP Visual Encoding (CCVE): One of the limitations of CLIP is that the gener-
ated image embeddings for different images tend to be very similar, making it challenging
for the decoder to differentiate well between them. To overcome this issue, we propose a
novel cluster CLIP visual encoder (CCVE) with the goal of generating more discriminative
image embeddings (see Figure 2). During the training phase, the CCVE module first clus-
ters the reports in the database into 13 categories based on the impression section. Next, we
create a set of 13 distinct convolution operators to act as filters. Given a CXR image and an
impression with label k, we pass the image through the kth convolution filter and use CLIP
to match the embedding of the filtered image with the text embedding of the impression.
During the inference phase, the given image is processed using all the 13 filters and all the
13 filtered image embeddings are passed as inputs to the decoder.

The proposed CCVE method has two advantages. Firstly, it generates multiple diverse
embeddings from the same image because the convolution filters are trained to focus on
different aspects based on the disease category. Secondly, due to the transformer’s self-
attention mechanism, the attention output of the classification token of the transformer can
reveal which of the 13 image embeddings of CCVE are most relevant for a given image.
Filtered images corresponding to these embeddings can highlight areas important for report

Citation
Citation
{Irvin, Rajpurkar, Ko, Yu, Ciurea{-}Ilcus, Chute, Marklund, Haghgoo, Ball, Shpanskaya, Seekins, Mong, Halabi, Sandberg, Jones, Larson, Langlotz, Patel, Lungren, and Ng} 2019

Citation
Citation
{Honnibal and Montani} 2017

Citation
Citation
{Liu, Mao, Wu, Feichtenhofer, Darrell, and Xie} 2022

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, Krueger, and Sutskever} 2021



X-RAY REPORT GENERATION: IMAGE ENCODING 5

Figure 2: Cluster-based CLIP training and inference setup. K = 13 and corresponds to 13
disease labels from CheXbert labeler.

generation, thereby enhancing explainability.
The clustering of impression sections of the reports is performed using the CheXbert

automatic report labeling library [21]. CheXbert uses named entity recognition NLP tech-
niques along with BERT to automatically label sentences into one of the 14 CXR disease
categories. We selected only 13 of them because two classes (‘pleural effusion’ and ‘pleural
other’) were identifying almost the same sentences during parsing.

3.2 Report Text Generation
We use three different decoding methods for evaluating the effectiveness of image encoding
techniques: vanilla transformer decoder [7], M2 (meshed-memory transformer) transformer
decoder [17], and CNN-RNN-RNN decoder [15]. M2 transformer is a state-of-the-art cap-
tioning algorithm that has been further optimized by Miura et. al. [17] for the task of report
generation. The CNN-RNN-RNN decoder relies on hierarchical RNN for decoding [15].
Each of these decoders receives outputs from FVE, CVE, CCVE, or DVE modules in the
form of some latent representation of an X-ray image. It must be emphasized that there
are differences in pre-processing steps, hyperparameter settings, and training strategies used
in [7] and [17]. Since our primary goal is benchmarking various image encoders, we re-
implemented the decoders ourselves to run the experiments under the same settings for a fair
comparison. Hence, it is not possible to directly compare the results reported in this work
with those reported in the literature [7, 17].

4 Experimental Results

4.1 Dataset
For our experiments, we used the MIMIC-CXR dataset, which is currently the largest pub-
licly available radiology report dataset. It consists of 473,057 images and 206,563 reports
from 63,478 patients. Among these images, there are 240,780 anteroposterior (AP), 101,379
posteroanterior (PA), and 116,023 lateral (LL) views. The associated reports consist of mul-
tiple sections: background information, impression, and findings. For our experiment, we
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have used only the AP images (other views are not consistently available for all patients) and
retained only the findings sections of the reports as they contain the most information. We
have used the default test set of AP images (3800 samples) provided within the MIMIC-CXR
dataset in all our evaluations.

4.2 Implementation Details
All our experiments were carried out on an RTX A6000 48GB GPU using Python’s PyTorch
library.
Fine-Grained Visual Encoding (FVE): We trained both CDC and FGC in the following
way: batch size of 32, learning rate of 1e-4, early stopping with patience of 10, and ImageNet
weight initialization. The model hyperparameters were picked based on the average AUC
maximization on the held-out validation set. Robust deep AUC maximization (DAM) loss
was used for network optimization. During the training process of decoders, the FVE was
frozen and only used for the generation of coarse and fine-grained image embeddings with
the dimension of 7×7×768 each.
CLIP Visual Encoding (CVE) and Cluster CLIP Visual Encoding (CCVE): Fine-tuning
the CLIP model requires a carefully selected set of hyperparameters because it is prone to
gradient explosion. We selected ResNet(RN)50x4 as the visual backbone and the following
set of hyperparameters provided the best performance: learning rate of 1e-6, batch size of
64, and Adam optimizer with weight decay of 0.2. We trained the model for 30 epochs and
selected the epoch with the lowest loss on the validation set. The same training set was used
in the case of CCVE. As in the case of FVE, CVE and CCVE were frozen during the training
process for decoders and their image embeddings with sizes of 9× 9× 640 and 13× 640,
respectively, were passed to the decoders.
Direct Visual Encoding (DVE): DenseNet-121 produces features of size 7 × 7 × 1024,
which are passed to the decoders for end-to-end training.
Report Text Generation: All of the decoders were trained with the same set of hyperpa-
rameters: 15 epochs, batch size of 24, and learning rate of 5e-4 with Adam optimizer.

4.3 Results and Discussion
The performance of all encoder-decoder configurations is reported in Table 1. Performance
has been measured using both NLP metrics (BLEU, ROUGE, METEOR, and CIDER) and
clinical accuracy metrics (precision, recall, and F1). It can be observed that simple CNN-
based image encoders such as DVE and FVE generally outperform the contrastively trained
CLIP-based encoders (CVE and CCVE). This is especially true in the case of clinical accu-
racy metrics. Furthermore, FVE along with transformer decoders has demonstrated the best
results across various NLP and clinical accuracy metrics. Some examples of the generated
reports are shown in Figure 3. Regardless of the decoder, DVE, CVE, and CCVE encoders
produce similar reports. However, FVE captures most of the abnormalities present in the
image, which is the most important aspect of report generation.

We hypothesize that the relatively poor performance of CLIP-based encoders (CVE and
CCVE) can be attributed to the limitations in the chosen training strategy. Recall that DVE
and FVE are trained using the text in the findings section of the report. While DVE is
trained end-to-end, FVE is trained based on coarse and fine-grained labels extracted from the
findings section. On the other hand, due to issues with tokenization length, CLIP fine-tuning
is based on the impressions section of the report. Though the impression section is supposed
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Table 1: Performance of automated X-ray report generation models. Here, B, RG, MTR,
CDR, P, and R correspond to BLEU, ROUGE, METEOR, CIDER, precision, and recall
metrics, respectively and F1 is the mean of all the per-class F1 scores.

Model B1 B2 B3 B4 RG MTR CDR P R F1
Transformer Decoder

DVE 0.286 0.172 0.115 0.083 0.231 0.116 0.109 0.320 0.179 0.169
CCVE 0.267 0.159 0.104 0.074 0.224 0.107 0.091 0.246 0.142 0.108
CVE 0.276 0.165 0.110 0.079 0.221 0.110 0.092 0.382 0.142 0.129
FVE 0.299 0.182 0.124 0.090 0.238 0.123 0.136 0.443 0.212 0.220

M2 Decoder
DVE 0.297 0.181 0.123 0.089 0.238 0.123 0.129 0.418 0.205 0.211
CCVE 0.266 0.159 0.105 0.073 0.224 0.108 0.090 0.249 0.146 0.130
CVE 0.278 0.167 0.112 0.081 0.227 0.112 0.103 0.206 0.345 0.116
FVE 0.298 0.183 0.124 0.090 0.242 0.125 0.137 0.402 0.232 0.236

RNN-RNN Decoder
DVE 0.289 0.171 0.114 0.081 0.228 0.112 0.112 0.296 0.163 0.153
CCVE 0.246 0.147 0.097 0.068 0.225 0.104 0.096 0.243 0.137 0.103
CVE 0.254 0.152 0.101 0.071 0.226 0.106 0.096 0.344 0.140 0.100
FVE 0.277 0.167 0.112 0.080 0.235 0.116 0.116 0.309 0.187 0.172

to summarize the most relevant information, the impressions section of the reports have
numerous common words and very few words identifying the abnormality. Consequently,
we believe that the CLIP-based encoders tend to focus on the common words and features
between the samples. Moreover, the use of CheXbert labeler in CCVE is likely to introduce
errors in the clustering process, which can propagate through the subsequent models during
training. This highlights the need for a better training strategy to fine-tune the CLIP model.

4.3.1 CCVE Evaluation

To further evaluate CCVE, we ran both qualitative and quantitative tests. For quantita-
tive analysis, we extracted image embeddings, applied dimensionality reduction using PCA
(from 8320 to 2000 keeping approximately 70% of the variance), and fed them to the Cat-
Boost classifier [3]. The model gave the ROC-AUC of 0.711 on the task of disease classifi-
cation, which is a lower score when compared to CNN models from Table 2. Lower ROC-
AUC based on CCVE features when compared to CNN models explains the lower macro-F1
score of CCVE on the task of report generation. The qualitative evaluation of CCVE using
the t-SNE dimensionality reduction algorithm in Figure 4 shows the effectiveness of CCVE
in producing distinct clusters for images, which was the initial motivation for creating this
encoder. Finally, explainability is an important aspect of medical imaging and the better
explainability of the proposed CCVE method is demonstrated in Figure 4, where the filtered
images highlight areas in the image that are important for report generation.

4.3.2 Choice of FVE backbone

ConvNeXt-small was experimentally selected as the FVE backbone based on an architectural
search. DenseNet or ResNet has been the default image encoder in many report generation
architectures. However, we evaluated other options for the FVE backbone: ResNet-(18/50),
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Figure 3: Examples of reports generated by different model configurations. The bold text
highlights abnormalities that models detect. FVE is able to identify most of the abnormali-
ties.

Table 2: ROC-AUC of models on the task of CXR image classification of 14 disease labels.
Models RN-18 RN-50 DN-121 ViT-s Swin-s ConvNeXt-s ConvNeXt-b
ROC-AUC 0.808 0.810 0.817 0.720 0.762 0.829 0.810

DenseNet-121, ViT-small, Swin-small, ConvNeXt-small/base. All these encoders were ini-
tialized with ImageNet weights. Note that Swin-small and ViT-small were trained with dif-
ferent hyperparameters (batch size 256, learning rate 1e-4) and optimizer (SAM optimizer
produced better results than Adam in our experiments) compared to the hyperparameters re-
ported for CNN in Section 4.2. Even though ConvNeXt-small has the smallest number of
parameters among all the above encoders, it had the best performance when evaluated on the
task of image classification (see Table 2). CDC with a ConvNeXt-small backbone had ROC-
AUC of 0.829 and FGC with the same backbone had ROC-AUC of 0.816 on the held-out
validation set.

4.3.3 Importance of Fine-Grained Labels

FVE is trained to encode the semantic information from the images. To further validate
the importance of providing semantic information to the decoder, we used ground truth fine-

Table 3: Performance of language encoder-decoder transformer with ground-truth fine-
grained labels used as textual input.

B1 B2 B3 B4 RG MTR CDR P R F1
0.318 0.263 0.222 0.196 0.287 0.161 0.219 0.827 0.747 0.778
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Figure 4: Left: t-SNE visualization of 13 distinct clusters of CCVE image embeddings.
Right: Examples of outputs of CCVE’s convolution operation - filtered images highlight
relevant areas related to the disease mentioned in the report.

grained labels as inputs to the encoder-decoder transformer. We fed ground truth fine-grained
labels in the text form to the encoder. This configuration had a macro-F1 score of 0.778 on
its own (see Table 3), demonstrating that semantic information provided by fine-grained
labels is key to accurate report generation. This result indicates that semantic information
extraction must be a priority for clinically accurate report generation.

We have also experimented with using outputs of FVE in text form. We passed the
fine-grained labels generated by FVE as input to the language encoder-decoder transformer.
However, the results were much worse than those reported in Table 3 because FVE does
not always produce correct labels and the encoder-decoder network did not train well under
noisy conditions. Therefore, we conclude that it is better to utilize the image embeddings of
FVE rather than the labels generated by it.

5 Conclusion

Most existing automated X-ray report generation systems focus on text decoding techniques
and often overlook image encoding. In this work, we have analyzed four different image en-
coding techniques in depth. Our experiments show that encoders which are good at semantic
information extraction, are also good at producing reports with the best NLP and clinical
accuracy metrics. Thus, effective report generation models must have an image encoder
optimized for semantic information extraction.

Furthermore, we have proposed an explainable cluster-based CLIP visual encoder to
improve the efficiency of the CLIP visual encoder at capturing useful information. Though,
it has not shown improvement when compared to the original CLIP encoder, we believe that
the limitation lies with the training process. In general, our work highlights the need for
more research effort on the image encoding component as it can boost the accuracy of the
generated reports and push automated radiology report generation systems closer to industry
deployment.
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