

# On the Importance of Image Encoding in Automated Chest X-Ray Report Generation

Otabek Nazarov, Mohammad Yaqub, Karthik Nandakumar 🖾 otabek.nazarov@mbzuai.ac.ae

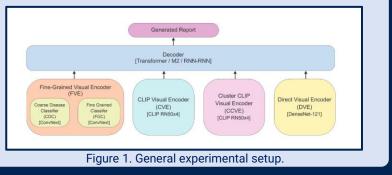
BMVC 2022

#### Abstract

- Compare different image encoding approaches (direct, fine-grained, CLIP, and Cluster-CLIP) along with multiple decoders to understand the relative importance of encoder and decoder components.
- Propose a novel cluster CLIP visual encoder (CCVE) that aims to generate more discriminative and explainable representations.

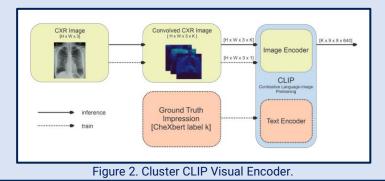
### Introduction

- **Clinical problem**. Shortage of radiologists for on time chest X-ray diagnosis.
- **Problem statement.** Given an image of chest X-ray, generate a report capturing abnormalities.
- Existing works. Primarily focus on improving decoder and training method, but image encoding is neglected; mainly simply pretrained CNN is used.
- **Dataset.** MIMIC-CXR: ~200,000 image-report pairs



## Method

- **Direct Visual Encoder (DVE)**. DenseNet-121 trained end-to-end along with decoder.
- Fine-Grained Visual Encoder (FVE). Two ConvNextsmall classifiers (coarse with 14 classes and finegrained with 410 classes).
- CLIP Visual Encoder (CVE). Contrastive languageimage pretraining (CLIP) model trained on reports' impression section.
- Cluster CLIP Visual Encoder (CCVE). Novel encoding method designed to produce distinct class embeddings. Image passed through convolutional filter prior to CLIP encoding; filters are selected based on image label during training stage; all filters are used during inference (see Figure 2).
- **Decoders.** Three different decoders are used: transformer, M2, and hierarchical RNN.



#### **Results and Discussion**

| Model               | B1    | B2    | B3    | B4    | RG    | MTR   | CDR   | Р     | R     | F1    |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Transformer Decoder |       |       |       |       |       |       |       |       |       |       |
| DVE                 | 0.286 | 0.172 | 0.115 | 0.083 | 0.231 | 0.116 | 0.109 | 0.320 | 0.179 | 0.169 |
| CCVE                | 0.267 | 0.159 | 0.104 | 0.074 | 0.224 | 0.107 | 0.091 | 0.246 | 0.142 | 0.108 |
| CVE                 | 0.276 | 0.165 | 0.110 | 0.079 | 0.221 | 0.110 | 0.092 | 0.382 | 0.142 | 0.129 |
| FVE                 | 0.299 | 0.182 | 0.124 | 0.090 | 0.238 | 0.123 | 0.136 | 0.443 | 0.212 | 0.220 |
| M2 Decoder          |       |       |       |       |       |       |       |       |       |       |
| DVE                 | 0.297 | 0.181 | 0.123 | 0.089 | 0.238 | 0.123 | 0.129 | 0.418 | 0.205 | 0.211 |
| CCVE                | 0.266 | 0.159 | 0.105 | 0.073 | 0.224 | 0.108 | 0.090 | 0.249 | 0.146 | 0.130 |
| CVE                 | 0.278 | 0.167 | 0.112 | 0.081 | 0.227 | 0.112 | 0.103 | 0.206 | 0.345 | 0.116 |
| FVE                 | 0.298 | 0.183 | 0.124 | 0.090 | 0.242 | 0.125 | 0.137 | 0.402 | 0.232 | 0.236 |
| RNN-RNN Decoder     |       |       |       |       |       |       |       |       |       |       |
| DVE                 | 0.289 | 0.171 | 0.114 | 0.081 | 0.228 | 0.112 | 0.112 | 0.296 | 0.163 | 0.153 |
| CCVE                | 0.246 | 0.147 | 0.097 | 0.068 | 0.225 | 0.104 | 0.096 | 0.243 | 0.137 | 0.103 |
| CVE                 | 0.254 | 0.152 | 0.101 | 0.071 | 0.226 | 0.106 | 0.096 | 0.344 | 0.140 | 0.100 |
| FVE                 | 0.277 | 0.167 | 0.112 | 0.080 | 0.235 | 0.116 | 0.116 | 0.309 | 0.187 | 0.172 |

- **FVE** showed the best performance; thus, semantic information extraction is a key for effective image encoding.
- CLIP-based performed poorly
  - CCVE gave ROC-AUC of 0.71, while FVE gave ROC-AUC of 0.83
  - Contrastive training might be focusing on wrong words during training
- Future work.
  - CLIP-based methods need proper training method for medical data
  - Explore other methods that better extract semantic information.