

IronDepth: Iterative Refinement of Single-View Depth using Surface Normal and its Uncertainty

Gwangbin Bae, Ignas Budvytis, Roberto Cipolla

University of Cambridge

Biased to the physical scale

Motivation

Limitations of existing depth estimation methods:

1) **Poor generalization ability**

Poor performance for objects unseen during training^[1]

Method

Normal-guided depth refinement

- Depth of a pixel can be propagated to a target pixel, using the predicted surface normal as guidance
- We can formulate depth refinement as classification of choosing the neighboring pixel to propagate from

Poor surface normal accuracy 2)

Input / GT Pred Depth

Point Cloud

 $\mathsf{Depth} = [2.0, 2.4, 3.0, 4.0, 6.0]$

In our previous work^[3], we estimated per-pixel surface normal and the associated aleatoric uncertainty

$d_{t=1}(u_i, v_i) = \sum_{j \in \mathcal{N}_i} w_{t=1}^{prop}(u_i, v_i, j) \cdot d_{t=1}^{prop}(u_i, v_i, j)$

 $\mathbf{r}(u_i, v_i) = \begin{pmatrix} \frac{u_i - u_0}{f_u} & \frac{v_i - v_0}{f_v} & 1 \end{pmatrix}^{\mathsf{T}}$

IronDepth pipeline

- Iteratively refine the coarse resolution depth-map using normalguided depth propagation
- Upsample the refined depth-map by applying the normal-guided propagation to sub-pixel points

Results

2)

Qualitative comparison 1)

- Our method is better at capturing the orientation of the surfaces

Method	De	pth err	or	Dept	h accu	iracy	No	ormal er	ror	Normal accuracy		
	abs rel	rmse	log ₁₀	δ_1	δ_2	δ_3	mean	median	rmse	11.25°	22.5°	30°
DORN [5]	0.106	0.397	0.046	0.877	0.970	0.990	44.7	39.3	53.3	9.2	26.7	38.0
VNL [6]	0.100	0.368	0.043	0.895	0.980	0.996	26.8	17.0	37.9	36.3	59.4	68.6
BTS [7]	0.110	0.392	0.047	0.886	0.978	0.994	32.4	24.7	42.1	22.7	46.1	58.3
AdaBins [2]	0.103	0.364	0.044	0.902	0.983	0.997	28.8	20.7	38.6	28.3	53.2	64.7
Ours	0.101	0.352	0.043	0.910	0.985	0.997	20.8	11.3	31.9	49.7	70.5	77.9

Usefulness of IronDepth

IronDepth can improve the accuracy of existing methods

Mathad	De	pth err	or	Dept	h accu	iracy	No	rmal er	or	Normal accuracy		
Method	abs rel	rmse	log ₁₀	δ_1	δ_2	δ_3	mean	median	rmse	11.25°	22.5°	30°
DORN	0.106	0.397	0.046	0.877	0.970	0.990	44.7	39.3	53.3	9.2	26.7	38.0
DORN + Ours	0.099	0.359	0.042	0.898	0.978	0.993	21.3	11.8	32.5	48.5	69.6	77.1
VNL	0.100	0.368	0.043	0.895	0.980	0.996	26.8	17.0	37.9	36.3	59.4	68.6
VNL + Ours	0.097	0.353	0.042	0.902	0.983	0.996	20.5	11.0	31.7	50.6	71.0	78.2
AdaBins	0.103	0.364	0.044	0.902	0.983	0.997	28.8	20.7	38.6	28.3	53.2	64.7
AdaBins + Ours	0.100	0.351	0.042	0.911	0.985	0.997	20.7	11.3	31.8	49.9	70.6	78.0

IronDepth can seamlessly be applied to depth completion 2)

# 1	# Magguramants	Dep	th met	rics (w	/o sca	le-mat	Depth metrics (w/ scale-match)						
		abs rel	rmse	\log_{10}	δ_1	δ_2	δ_3	abs rel	rmse	\log_{10}	δ_1	δ_2	δ_3
	0	0.101	0.352	0.043	0.910	0.985	0.997	0.101	0.352	0.043	0.910	0.985	0.997
	10	0.097	0.341	0.041	0.917	0.986	0.997	0.076	0.300	0.033	0.944	0.991	0.998
	50	0.084	0.304	0.035	0.938	0.990	0.998	0.063	0.260	0.027	0.962	0.994	0.999
	100	0.070	0.266	0.030	0.957	0.993	0.999	0.053	0.231	0.023	0.972	0.995	0.999
	200	0.051	0.212	0.021	0.976	0.996	0.999	0.041	0.191	0.018	0.983	0.997	0.999

Project Page

Demo (YouTube)

- Results on iBims-1 (network trained on NYUv2)

Method	Depth error			Depth accuracy			Normal error			Normal accuracy			Planarity	
	rel r	mse	log ₁₀	δ_1	δ_2	δ_3	mean	median	rmse	11.25°	22.5°	30°	$\mathbf{\epsilon}^{plan}$	$\varepsilon^{\rm orie}$
VNL [6]	0.24 1	1.07	0.11	0.55	0.85	0.94	39.8	30.4	51.0	17.9	38.6	49.4	6.49	18.72
BTS [7]	0.24 1	1.08	0.12	0.53	0.84	0.94	44.0	37.8	53.5	13.0	29.5	40.0	7.25	20.52
DAV [8]	0.24 1	1.06	0.10	0.59	0.84	0.94	-	-	-	-	-	-	7.21	18.45
AdaBins [2]	0.22 1	1.06	0.11	0.55	0.86	0.95	37.1	29.6	46.9	18.0	38.7	50.6	6.25	17.51
Ours	0.21 1	1.03	0.11	0.59	0.87	0.95	25.3	14.2	37.4	43.1	63.9	71.6	3.29	8.48

Code (GitHub)

References

[1] How do neural networks see depth in single images?, Dijk and Croon, ICCV 2019 [2] Adabins: Depth estimation using adaptive bins, Bhat et al., CVPR 2021 [3] Estimating and exploiting the aleatoric uncertainty in surface normal estimation, Bae et al., ICCV 2021 [4] Surface normal estimation of tilted images via spatial rectifier, Do et al., ECCV 2020 [5] Deep ordinal regression network for monocular depth estimation, Fu et al., CVPR 2018 [6] Enforcing geometric constraints of virtual normal for depth prediction, Yin et al., ICCV 2019 [7] From big to small: Multi-scale local planar guidance for monocular depth estimation, Lee et al., arXiv 2019 [8] Guiding monocular depth estimation using depth-attention volume, Huynh et al., ECCV 2020

