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Neighbor Regularized Bayesian Optimization for Hyperparameter Optimization

Lei Cui

Bayesian Optimization (BO) is a common solution to
search optimal hyperparameters based on sample
observations of a machine learning model. Existing
BO algorithms could converge slowly even
collapse when the potential observation noise
misdirects the optimization.

In this paper, we propose a novel BO
hyperparameter optimization algorithm called
Neighbor Regularized Bayesian Optimization
(NRBO):

* We propose a neighbor-based regularization to
smooth each sample observation, which could
reduce the observation noise efficiently without
any extra training cost.

* We further design a density-based acquisition
function to adjust the acquisition reward and
obtain more stable statistics.

* We design a adjustment mechanism to ensure the
framework maintains a reasonable regularization
strength and density reward conditioned on
remaining computation resources.
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Fitting surrogate model on the same dataset with different noise level.
From left to right: Gradually increased noise level g, from 0 to 0.8. Top

The performance of 9 optimizers on bayesmark benchmark

row: A typical collapse case of Bayesian optimization with Gaussian
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process. Bottom row: Neighbor regularized Bayesian optimization.

Naive Bayes

Random 62.00 75.02 95.28 81.96 87.09 31.56
HEBO  62.07(+0.07) 74.88(-0.14) 95.35(+0.07) 81.91(-0.05) 87.50(+0.47) 32.34(+0.78)
NRBO  62.22(+0.22) 77.12(+2.10) 95.43(+0.15) 82.16(+0.20) 87.94(+0.85) 33.92(+1.36)
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Experiment results on popular computer vision tasks.
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* In observation stage, neighbor regularized mechanism is
introduced to smooth the observation noise and release the
burden of repetitive observation.

* In acquisition stage, we propose a density-based acquisition
function to accelerate the acquisition process, in which adjacent
sample points in the neighbor are considered.

(Left) Proxy task and full-training task results on ImageNet. (Right)
Proxy task and full-training task results on COCO.

The hyperparameter searched by NRBO on proxy task still take the
lead when transferred to full training tasks.



