

Fixed Point Layers for Geodesic Morphological Operations

Santiago VELASCO-FORERO, Ayoub RHIM, Jesus ANGULO

Center for Mathematical Morphology Mines Paris - PSL Research University

Introduction		Learning geometric attributes on simple objects
1. Morphological operators by reconstruction =	Take home message	Each example is a random image with no overlapping objects with random size following an uniform distribution between [3, 20] pixels (the image size is 128×128 pixels). Considered geometrical attributes: Area, Perimeter, Area of Bounding-Box and Eccentricity. 1024 random images are generated for training and 128 for validation. Two models composed of three convolutional layers of kernel size 5×5 with 24 filters with Relu activation functions are trained to predict the value of a geometric attribute, with the difference for the model denoted as CNN_R a reconstruction by dilation (2) is included of the last layer
 contour preserved operators for Convolutional Neural Networks. Interpretation of its Jacobian matrix in terms if <i>fixed points</i> and <i>basin attraction</i> Experimental results for <i>learning geometric</i> <i>attributes</i> and the generalisation for image denoising in training in <i>Only one noise level</i> <i>and only one dataset</i> 	1. $R_g^{\delta}(f)$ is contour preserving "layer". 2. Reconstruction $R_g^{\delta}(f)$ has no parameter 3. $R_g^{\delta}(f) \leq g \forall f, g$ 4. Implementation by Dynamic control flow. 5. Adaptive Reception Field size. 6. Defined for $1D, 2D,, nD$ images.	

Morphological Reconstruction

Let us consider two numerical functions $f, g \in \mathcal{F}(\Omega, \mathbb{R})$, the set of functions mapping from space of points Ω to \mathbb{R} , the set of different possible values of the image. Let f, g be such that $f \leq g, f$ is called in [Soi13] the *marker* and g the *mask*. The geodesic dilation of size one of f with respect to g is denoted by $\delta_g^{(1)}(f)$ and is defined as the point-wise minimum between gand the elementary dilation δ_{SE} in a given local neighbourhood SE

 $\delta^{(1)}(f,g)(x) := \delta^{(1)}_g(f)(x) := \delta_{\text{SE}}(f)(x) \wedge g(x) \quad (1)$

where \land denotes the minimum coordinate-wise operation. The *reconstruction by dilation* of a mask *g* from a marker *f* is defined as the geodesic dilation of *f* with respect to *g* iterated until stability and is denoted by $R_g^{\delta}(f)$:

Interpretation of Jacobian matrix

For a multivariate, vector-valued function $\tau : \mathbb{R}^n \mapsto \mathbb{R}^n$, the Jacobian is a $n \times n$ matrix denoted by \mathbf{J}_{τ} , containing all first order partial derivatives

The Jacobian matrix of (2) with respect to *f* is determined by

 $\mathbf{J}_{R^{\delta}(f,g)}(f(x)) = \begin{cases} 1 \text{ in } (i,i) & \text{if } f(x_i) = R^{\delta}(f,g)(x_i) \\ 1 \text{ in } (i,j) & \text{if } x_j \in BA_{x_i}(\delta_g^{(1)}(f)) \\ 0 & \text{otherwise,} \end{cases}$ (3)

and equivalent with respect to the mask g is $J_{R^{\delta}(f,g)}(g(x)) = \begin{cases} 1 \text{ in } (i,i) & \text{if } g(x_i) = R^{\delta}(f,g)(x_i) \\ 1 \text{ in } (i,j) & \text{if } x_j \in BA_{x_i}(\delta_g^{(1)}(f)) \end{cases}$ (4) 0 otherwise.

We highlight that the basin of attraction in both (3) and (4) are flat zones, i.e., $\mathbf{x} \in \mathbb{R}^{n}$ $(\delta^{(1)}(f)) \rightarrow \mathbb{R}^{\delta}(f, q)(\mathbf{x}) = \mathbb{R}^{\delta}(f, q)(\mathbf{x})$ with the input image used as mask.

Table: Quantitative comparison of Experiment 3.1. The average MSE over ten repetitions in the validation set is reported. CNN and CNN_R models have the same number of parameters.

Attribute	CNN	CNN <i>r</i>	Improvement
Area	0.001084	0.000546	49.61%
Perimeter	0.000683	0.000248	64.36%
Bounding Box Area	0.000504	0.000474	6.08%
Eccentricity	0.003715	0.000301	91.87%

(c) Area

(g) Prediction CNN

(e) Prediction CNN

(d) Perimete

480

BMVC2022

 $R^{\delta}(f,g)(x) := R^{\delta}_{g}(f(x)) := \underbrace{\delta^{(1)}_{g} \circ \ldots \circ \delta^{(1)}_{g}}_{k \text{ times}}(f(x)) \quad (2) \quad x_{j} \in BA_{x_{i}}(\delta^{(1)}_{g}(f)) \Rightarrow R^{\delta}(f,g)(x_{j}) = R^{\delta}(f,g)(x_{i}).$

where k is such that $\delta_g^{(k)}(f) = \delta_g^{(k+1)}(f)$. The reconstruction by dilation extracts the *domes* or *peaks* of the mask which are marked by the marker.

Figure: Reconstruction of mask *g* from a marker *f*

Figure: Basins of attraction with cardinality greater than one. BA_{x_a} , BA_{x_b} and BA_{x_c} contribute to the Jacobian with respect to the mask *f* in (3) and are associated with a local maxima of *f*. The BA_{x_d} contributes to the Jacobian with respect to the marker *g* (4), and is associated with a local minimum of *g*.

As a final observation, the number of nonzero values in $\mathbf{J}_{R_{g}^{\delta}(f)}(f(x)) + \mathbf{J}_{R_{g}^{\delta}(f)}(g(x))$ is equal to *n* (number of pixels).

Take home message

1. Jacobian with respect to *f*: Gradient passes

Figure: a) Example of ground truth. b) Bounding box Area c) Eccentricity d) Area e) Perimeter. f) Example of prediction for the attribute perimeter e) for a CNN in f) and the proposed CNN_R in g). Both trained models in f) and g) have the same number of parameters. Validation loss in Table. 1

Denoising (Only one noise level and only one database)

(a) MNIST Gaussian noise

— CNN

CNN Augmentatio
 CNN CNN

CNN_CNN_Augmentat

HMAX CNN Augmentatio

(b) MNIST uniform noise

Figure: RMAX transform. The illustrated example use $\epsilon = 1$, but in practical implementation it can be a small number.

through some maximum of *f*.2. Jacobian with respect to *g*: Gradient passes through some minium of *g*.

Available Code

https://github.com/Jacobiano/ GeodesicMorphological

(c) Fashion MNIST Gaussian noise

(d) Fashion MNIST uniform noise

Figure: Classification accuracy for MNIST and Fashion MNIST with additive Gaussian and Uniform noise with $\mu = 0$ and $\sigma \in \{0., 0.05, \dots, 1\}$. Denoising blocks has been trained *only* on MNIST with additive noise distributed as an absolute value zero-mean Gaussian with $\sigma = 0.1$. Models training with augmentation by additive random Gaussian noise at $\mu = 0$ and σ between 0 and 0.2.