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Introduction

1. Morphological operators by reconstruction =
contour preserved operators for Convolutional
Neural Networks.

2. Interpretation of its Jacobian matrix in terms if
fixed points and basin attraction

3. Experimental results for learning geometric
attributes and the generalisation for image
denoising in training in Only one noise level
and only one dataset

Morphological Reconstruction

Let us consider two numerical functions
f ,g ∈ F(Ω,R), the set of functions mapping
from space of points Ω to R, the set of different
possible values of the image. Let f ,g be such
that f ≤ g, f is called in [Soi13] the marker and
g the mask. The geodesic dilation of size one of
f with respect to g is denoted by δ(1)

g (f ) and is
defined as the point-wise minimum between g
and the elementary dilation δSE in a given local
neighbourhood SE

δ(1)(f ,g)(x) := δ
(1)
g (f )(x) := δSE(f )(x) ∧ g(x) (1)

where ∧ denotes the minimum coordinate-wise
operation. The reconstruction by dilation of a
mask g from a marker f is defined as the
geodesic dilation of f with respect to g iterated
until stability and is denoted by Rδ

g(f ):

Rδ(f ,g)(x) := Rδ
g(f (x)) := δ

(1)
g ◦ . . . ◦ δ

(1)
g︸ ︷︷ ︸

k times

(f (x)) (2)

where k is such that δ(k)
g (f ) = δ

(k+1)
g (f ). The

reconstruction by dilation extracts the domes or
peaks of the mask which are marked by the
marker.

Figure: Reconstruction of mask g from a marker f

Figure: HMAX transform

Figure: RMAX transform. The illustrated example use ε = 1,
but in practical implementation it can be a small number.

Take home message

1. Rδ
g(f ) is contour preserving ”layer”.

2. Reconstruction Rδ
g(f ) has no parameter

3. Rδ
g(f ) ≤ g ∀f ,g

4. Implementation by Dynamic control flow.
5. Adaptive Reception Field size.
6. Defined for 1D,2D, ...,nD images.

Interpretation of Jacobian matrix

For a multivariate, vector-valued function
τ : Rn 7→ Rn, the Jacobian is a n × n matrix
denoted by Jτ , containing all first order partial
derivatives
The Jacobian matrix of (2) with respect to f is
determined by

JRδ(f ,g)(f (x)) =


1 in (i , i) if f (xi) = Rδ(f ,g)(xi)

1 in (i , j) if xj ∈ BAxi(δ
(1)
g (f ))

0 otherwise,
(3)

and equivalent with respect to the mask g is

JRδ(f ,g)(g(x)) =


1 in (i , i) if g(xi) = Rδ(f ,g)(xi)

1 in (i , j) if xj ∈ BAxi(δ
(1)
g (f ))

0 otherwise.
(4)

We highlight that the basin of attraction in both
(3) and (4) are flat zones, i.e.,
xj ∈ BAxi(δ

(1)
g (f ))⇒ Rδ(f ,g)(xj) = Rδ(f ,g)(xi).

Figure: Basins of attraction with cardinality greater than one.
BAxa,BAxb and BAxc contribute to the Jacobian with respect
to the mask f in (3) and are associated with a local maxima
of f . The BAxd contributes to the Jacobian with respect to the
marker g (4), and is associated with a local minimum of g.

As a final observation, the number of nonzero
values in JRδ

g(f )(f (x)) + JRδ
g(f )(g(x)) is equal to n

(number of pixels).

Take home message

1. Jacobian with respect to f : Gradient passes
through some maximum of f .

2. Jacobian with respect to g: Gradient passes
through some minium of g.

Available Code

https://github.com/Jacobiano/
GeodesicMorphological

Learning geometric attributes on simple objects

Each example is a random image with no overlapping
objects with random size following an uniform distribution
between [3,20] pixels (the image size is 128× 128 pixels).
Considered geometrical attributes: Area, Perimeter, Area
of Bounding-Box and Eccentricity. 1024 random images
are generated for training and 128 for validation. Two
models composed of three convolutional layers of kernel
size 5× 5 with 24 filters with Relu activation functions are
trained to predict the value of a geometric attribute, with
the difference for the model denoted as CNNR a
reconstruction by dilation (2) is included of the last layer
with the input image used as mask.

Table: Quantitative comparison of Experiment 3.1. The
average MSE over ten repetitions in the validation set is
reported. CNN and CNNR models have the same number of
parameters.

Attribute CNN CNNR Improvement
Area 0.001084 0.000546 49.61%

Perimeter 0.000683 0.000248 64.36%
Bounding Box Area 0.000504 0.000474 6.08%

Eccentricity 0.003715 0.000301 91.87%

Figure: a) Example of ground truth. b) Bounding box Area c)
Eccentricity d) Area e) Perimeter. f) Example of prediction
for the attribute perimeter e) for a CNN in f) and the
proposed CNNR in g). Both trained models in f) and g) have
the same number of parameters. Validation loss in Table. 1

Denoising (Only one noise level and only one database)

Figure: Classification accuracy for MNIST and Fashion
MNIST with additive Gaussian and Uniform noise with µ = 0
and σ ∈ {0.,0.05, . . . ,1}. Denoising blocks has been trained
only on MNIST with additive noise distributed as an
absolute value zero-mean Gaussian with σ = 0.1. Models
training with augmentation by additive random Gaussian
noise at µ = 0 and σ between 0 and 0.2.
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