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Abstract

The visual world naturally exhibits a long-tailed distribution of open classes, which
poses great challenges to modern visual systems. Existing approaches either perform
class re-balancing strategies or model ensembling based on image modality. In this pa-
per, we explore strategies of leveraging large-scale pretrained vision-language models for
visual long-tailed recognition inspired by the success of powerful multimodal representa-
tions that are promising to handle data deficiency and unseen concepts. We first introduce
a BALLAD method to finetune vision-language models, transferring open-vocabulary
knowledge into long-tailed domain dataset in a contrastive manner. Moreover, we pro-
pose a non-contrastive and non-parametric learning strategy named TACKLE to transfer
conceptual knowledge from visual-linguistic model parameters into generated images
to balance the training of visual representations. Extensive experiments have been con-
ducted on three popular long-tailed recognition benchmarks to demonstrate the effective-
ness of proposed methods.

1 Introduction
During past years, visual recognition tasks, such as image classification [9, 32, 39], object
detection [20, 29], semantic segmentation [2, 23, 43], and instance segmentation [10, 13, 21]
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have been significantly improved. The performance gains can be largely attributed to the
availability of large-scale high-quality datasets [5, 18, 19]. However, the problem of data
imbalance has inevitably emerged since real-world data often abide by a long-tailed distri-
bution (e.g., Pareto distribution[26] or Zipf’s law [46]). In other words, a few head classes
dominate the majority of training examples, whereas many rare or fine-grained classes only
have limited relevant data points.

To alleviate the issue, previous efforts either carefully create more balanced datasets
(e.g., ImageNet [5], MSCOCO [19], and Kinetics-400 [17]) with human labors or develop
more robust algorithms to handle data imbalance. However, since the former is notoriously
laborious and expensive, many researchers have been devoted to the latter. Formally, long-
tailed recognition (LTR) is a research field seeking robust models that 1) are resistant to
significant imbalanced class distribution; 2) can deal with few-shot learning of tail classes.
Many methods [42] have been proposed for solving LTR problems. According to the core
technical contributions, they can be divided into two categories. Methods in the first line
focus on class re-balancing strategies [11, 15, 24, 40] such as data re-sampling, loss re-
weighting, and logit adjustment. The second category focuses on improving network mod-
ules [3, 4, 16, 30, 33, 41, 45] by classifier designing, decoupled training, and representation
learning. While these methods have achieved significant progress, the performance of LTR
remains unsatisfactory. When delving deeper into the utilization of the existing imbalance
datasets, we have observed that almost all previous efforts are confined to a predetermined
manner which designs models entirely relying on the visual modality. That is to say, they
totally ignore the semantic features of the raw label text, which may be a promising solution
to exert additional supervision on inadequate data sources. Therefore, this paper explores
whether language modality can be effective and complementary information for this task.
In the meantime, we could also broaden generalization abilities to few-shot categories and
zero-shot novel instances.

Recently, contrastive vision-language (VL) models such as CLIP [27] and ALIGN [14]
brought a breath of fresh air into the vision community. They learn to align vision and
language representations with a contrastive loss given large-scale noisy image-text pairs col-
lected from the web. Motivated by this, we present a simple framework based on contrastive
vision-language models for LTR, termed as BALLAD (BALanced Linear ADapter). The
training procedure is broken into two phases. In Phase A, we keep finetuning both vision
and language branches on a specific LTR dataset through contrastive learning. It enables our
framework to fully exploit available training examples and update visual-language represen-
tations on a new domain. Then, during Phase B, we freeze the visual and linguistic networks
and employ an auxiliary linear adapter for refining on re-balanced training samples. The
adapter dynamically combines fixed image-text representations and balanced features via a
residual connection to refine the visual representations of tail classes.

However, the linguistic backbone brings about heavy computational overheads during
finetuning, especially when the text descriptions are complex or target data distributions
are fine-grained. Moreover, current finetuning method relies on conceptual knowledge con-
tained in the pretrained vision-language parameters, limiting the available choices of visual
backbones in transfer learning. Therefore, we propose a non-parametric retrieval strategy to
convert conceptual knowledge from visual-linguistic pretrained weights into images, named
as TACKLE (TrAnsfer Conceptual Knowledge from Language to imagE). To be specific,
visual encoders of VL models are leveraged to project images from web data into feature
embeddings E ∈ RN×d , where N is the number of web images. Afterwards, similarities be-
tween E and prompts of target categories are calculated via the language backbone. Based
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Figure 1: Overview of our TACKLE framework. We retrieve images from web-data mem-
ory according to the cosine similarity of web-images and target categories. The retrieved
images are combined with target dataset to compensate for data insufficiency. Note that only
parameters of downstream visual encoder are updated during the whole process.

on the similarity scores, k-nearest web images are retrieved as supplement to alleviate the
data insufficiency. In this way, we prevent direct finetuning of both visual and linguistic
encoders, while successfully transferring the conceptual knowledge into the visual domain.
More importantly, it is capable of incorporating any inductive bias into the design of long-
tailed visual backbone architectures. Our contributions are four folds:

• We point out the shortcomings of training with fixed class labels and propose to lever-
age language modality via contrastive vision-language backbone to facilitate long-
tailed recognition.

• We develop the BALLAD framework consisting of two phases to handle head and tail
classes successively. Specifically, we keep training the visual and language branches
of the pretrained vision-language model simultaneously at the first stage. Then we
adopt a linear adapter to tackle tail classes with vision-language parameters frozen.

• We introduce TACKLE, a novel retrieval-based strategy that utilizes abundant concep-
tual knowledge to retrieve incremental images from web collected datasets for solving
data insufficiency. The non-parametric characteristic of TACKLE prevent compli-
cated finetuning process of linguistic backbones and can be easily transferred to any
visual backbones.

• We conduct extensive experiments to demonstrate the effectiveness of both BALLAD
and TACKLE. In a fair comparison, both BALLAD and TACKLE can outperform
previous approaches.

2 Method
Our goal is to explore effective pattern of utilizing linguistic hints to alleviate knowledge
deficiency of long-tailed distribution. To do so, we first introduce BALLAD, a finetuning
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strategy that achieves effective multi-modal representations in long-tailed domain. BAL-
LAD includes two steps, the first step keeps finetuning the VL model in target datasets via
contrastive objectives (Sec 2.1). The second step adapts and fuses the former representation
with a balanced linear adapter while keeping backbone frozen to reserve open-vocabulary
capabilities (Sec 2.2). Moreover, we explore a non-parametric and model-agnostic knowl-
edge transfer method TACKLE to circumvent huge computational overheads of contrastive
finetuning and prevent presuming the downstream visual backbone to be the same as the
visual encoder of certain pretrained VL model (Sec 2.3).

2.1 Contrastive VL Models Finetuning
Contrastive vision-language models such as CLIP [27] and ALIGN [14] typically follow a
dual-encoder architecture with a language encoder Lenc and a visual encoder Venc. In this
stage, we jointly finetune the encoders to update the multimodal representation for long-
tailed recognition. Given an input image III, Venc is adopted to extract the visual feature for
III: fff v = Venc(III) ∈ Rdv . Likewise, Lenc is applied to encode an input text sequence TTT into
its corresponding text feature: fff l = Lenc(TTT ) ∈ Rdl . After extracting the feature for each
modality, two transformation matrices Wv ∈Rdv×d and Wl ∈Rdl×d are employed to project
the original visual and text features into a shared embedding space:

v =
W⊤

v fff v

∥W⊤
v fff v∥

, u =
W⊤

l fff l

∥W⊤
l fff l∥

, (1)

where v and u are both d-dimension normalized vectors in the joint multimodal space. Dur-
ing pretraining, contrastive vision-language models learn to align image-text pairs inside a
batch. The overall training objective consists of matching losses from two different direc-
tions, i.e., Lv→l for text retrieval and Ll→v for image retrieval. They both maximize the
scores of matched pairs while minimize that of unmatched ones, the objective function can
be formulated as:

L = Lv→l +Ll→v

=− 1
|T +

i | ∑
Tj∈T +

i

log
exp

(
v⊤i u j/τ

)
∑Tk∈T exp

(
v⊤i uk/τ

) − 1
|I +

i | ∑
Ii∈I+

i

log
exp

(
u⊤

i v j/τ
)

∑Ik∈I exp
(
u⊤

i vk/τ
) ,

where T and I denote a batch of images and text descriptions respectively, and T +
i /I +

i
denote positive text/image subsets matched to image Ii/ text Ti. τ denotes the temperature
hyperparameter.

Gururangan et al. [8] show that keeping domain-adaptive and task-adaptive model pre-
training can largely improve the performances on target NLP tasks. Similarly, we find that
reusing the image-text encoder weights and finetune them in a target long-tailed dataset also
benefits imbalanced recognition. Such finetuning strategy is effective in boosting the per-
formance of in-distribution targets recognition, especially in head categories with dominate
number of samples. The finetuning scheme should be carefully designed to avoid disturbing
the open-vocabulary zero-shot knowledge of VL models while absorbing the new knowledge
of target dataset simultaneously. Moreover, to prevent catastrophic forgetting and overfitting
of tail classes in finetuning large scale VL models, we introduce a balanced linear adapter
module to refine the tail classes representation.
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2.2 Balanced Linear Adapter
The phase of finetuning (Phase A) fully utilizes available training data and ensures the perfor-
mance for classes with abundant examples. However, tail classes are short of training exam-
ples and under the few-shot settings. Directly training the whole vision-language backbone
may easily overfit to them and lead to performance degradation. Inspired by parameter-
efficient adapter modules [6, 12], we freeze the vision-language backbone obtained from
Phase A and utilize an additional linear adapter layer to help our model refine its visual-
language representation on those infrequent classes. As shown in Figure 1, the text features
would remain the same as Phase A. The only difference lies in the image features. If we
assume the original image feature to be fff , the weight matrix and bias of the linear adapter as
W ∈ Rd×d and b ∈ Rd , then we can represent the refined image feature fff ⋆ as

fff ⋆ = λ ·ReLU
(

W⊤ fff +b
)
+(1−λ ) · fff , (2)

where λ indicates the residual factor to dynamically combine Phase-B fine-tuned image
features with the original image features of Phase A.

To avoid the Phase-B training from biasing towards head classes, we also adopt class-
balanced sampling strategy [16] to construct a balanced group of training samples. Suppose
there are K classes that constitute a total of N training samples in the target dataset. We can
represent the number of training samples for class j as n j and thus have N = ∑

K
j=1 n j. If we

assume these classes are already sorted in a decreasing order, then a long-tailed distribution
implies ni ≥ n j if i < j and n1 ≫ nK . For class-balanced sampling, we define the probability
of sampling each data point from class j to be q j =

1
K . In other words, to construct a balanced

group of training samples, we will first uniformly choose a class out of the K candidates and
then sample one data point from the selected class. Finally, we perform Phase B finetuning
with Lv→l on the balanced training data. The overall algorithm of finetuning and balanced
adapting is shown in Algorithm 1 in Appendix of supplementary material.

2.3 Transfer Knowledge from Language to Image
The strategy of finetuning relies on the assumption that reusing the original structure of
vision-language models and the computational overheads of back-propagating huge scale of
linguistic encoders are acceptable. However, for a visual backbone network, the incorpo-
rating of linguistic sub-nets is inefficient and limits the architecture choices of visual back-
bones since the pretrained weights are rather significant. We hypothesize the reason that
finetuning and adapter-based method BALLAD is effective in imbalanced distribution lies
in abundant conceptual knowledge contained in the linguistic encoder. The linguistic hints
compensate for knowledge insufficiency of tail classes. Therefore, we propose TACKLE,
a recipe for leveraging conceptual knowledge to generate images in an annotation-free and
non-parametric manner.

Given a pretrained vision-language model, we denote the visual and linguistic encoder as
V and L, respectively. For a theoretically infinite web-image set that is noisy and unlabeled,
which is denoted as D , we sample a sufficiently large subset of the images D from D . V
is leveraged to project the images I, (I ∈ D) into the feature embeddings fI = V(I)I∈D,
where fI ∈R|D|×d , d is the dimension of feature embeddings. We then instantiate assembled
prompts P(k) for each k in target dataset categories K, and then the prompts are fed into the
language encoder to obtain linguistic features fP = L(P(k))k∈K , fP∈R|K|×d . The probability
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of class k for web images can be modeled as:

pk =
exp

(
fP(k) f⊤I

)
/τ

∑
K
j=1 exp

(
fP( j) f⊤I

)
/τ

, (3)

where P = {p1, p2, ..., pK} ∈RK×|D| represents the probability that all collected web-images
are of this class for each category in target dataset. Then, top nk images are retrieved based
on the probability pk of P for category k:

Dk = |D|top{pk,nk},k ∈ K. (4)

During the whole retrieval process, the pretrained weights of V and L are frozen and no pa-
rameters updating is required. Afterwards, we concatenate all Dk, (k ∈ K) with target dataset
DT as {DT ,D1,D2, ...,DK} for long-tailed target visual backbone training. The whole pro-
cess is visualized in Fig. 1. TACKLE makes no presumption on the architecture of target
visual backbone and is capable of incorporating any inductive bias into the design of long-
tailed visual backbone.

The vast linguistic knowledge encoded in VL models is the key of tackling long-tailed
distribution. Therefore, the TACKLE can be perceived as one variant of knowledge dis-
tillation (KD) that transferred knowledge from linguistic encoder into downstream visual
backbone. Different from conventional KD methods that distill task-specific output logits or
features, TACKLE employs free web-images as intermediate modality for distilling knowl-
edge from pretrained VL model to downstream visual backbone. We suppose the TACKLE
has a great potential in leveraging linguistic instructions to tackle imbalanced data distribu-
tion in a non-parametric and model-agnostic way.

3 Experiments

3.1 Experiment Setup

Datasets. We conduct our experiments on three long-tailed benchmark datasets, namely
ImageNet-LT [22], Places-LT [22], and iNaturalist-2018 (iNat) [36]. ImageNet-LT and
Places-LT were first introduced in [22] for long-tailed recognition research. ImageNet-LT is
a long-tailed dataset with 1,000 categories sampled from the original ImageNet [5] follow-
ing the Pareto distribution with a power value of α = 6. Places-LT is a long-tailed version
of the original Places2 Database [44]. The training split of Places-LT contains with 184.5K
images from 365 categories, with 4,980 images maximally per class and minimally 5 images
per class. iNaturalist-2018 [36] is a real-world long-tailed dataset consisting of 437K im-
ages and 6 levels of label granularity (kingdom, genus etc.). The training and testing split of
iNaturalist-2018 contains 437,513 and 24,426 samples respectively.

We also collect a repository of noisy images collected from website, mainly sourced from
Conceptual 12M (CC12M) [1], Conceptual Captions 3M (CC3M) [31] and SBU Captions
(SBU) [25]. The specific details of the datasets are illustrated in Appendix A.1 in supple-
mentary material.
Implementation Details. We choose the pretrained weights of CLIP’s visual and linguis-
tic encoder to conduct BALLAD experiments. In the experiments of BALLAD, we vary
among ResNet-50, ResNet-100, ViT-B/16, and ResNet-50×16, which is 16× computation
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cost of ResNet-50 following the style of EfficientNet as introduced in [27] for visual en-
coder. The ResNet-50 is leveraged for all ablation studies by default unless specified. In
TACKLE, we employ ViT-B/16 to extract features of external images memory for retrieval,
and perform downstream training on ResNeXt and ViTs-like backbones respectively. All the
specific configurations like input resolution, optimizer, learning rate etc. can be found in
Appendix A.2 in supplementary material.
Evaluation Metrics. We evaluate the models for long-tailed recognition on the balanced
test splits and report the commonly used top-1 classification accuracy of all classes. Follow-
ing [16], we divide these classes into three subsets – many-shot, medium-shot, and few-shot
categories. Specifically, many-shot, medium-shot, and few-shot are decided according to the
amount of instances in each category, namely more than 100 images, 20-100 images, and
less than 20 images, respectively.

3.2 Performance Comparison

In this section, we compare the performance of BALLAD and TACKLE with long-tailed
recognition approaches that report state-of-the-art results on three benchmark datasets, i.e.,
ImageNet-LT, Places-LT, and iNaturalist-2018. Also, zero-shot performance of CLIP is also
compared with our BALLAD to demonstrate the value of our proposed finetuning method
in Appendix of supplementary material.
ImageNet-LT. Table 1 shows the long-tailed recognition results on ImageNet-LT. We present
BALLAD variants (ash grey color) with ResNet-50, ResNet-101, ResNet-50×16, and ViT-
B/16 as the visual backbone. We can see that BALLAD is superior to previous methods with
a relative large margin. For example, when comparing performance of ResNet-50 backbone,
BALLAD achieves 67.2 top-1 accuracy on overall evaluation, surpassing previous state-of-
the-art PaCo [4] by 7.0% even when PaCo is also initialized of CLIP pretrained weights.
When gradually increasing the size of visual backbone, we find the performance of BAL-
LAD also enjoys an improvement. It is worth noting that BALLAD with ResNet-50×16
achieves an accuracy of 76.5%.

As for TACKLE, it enjoys the merits of making no presumption of visual backbone,
therefore we compare ResNeXt-50 [39] and -101 performance with other methods (aquama-
rine color in Table 1). Without any re-balancing strategy, TACKLE outperforms previous
well-designed SOTA method by 2.4% and 2.5% on ResNeXt-50 and ResNeXt-101 respec-
tively.
Places-LT. We further evaluate BALLAD and TACKLE on Places-LT dataset and report
the results in Table 2. It is a commonly used scheme of previous approaches to pretrain their
backbones on ImageNet-1k [5] full dataset first to enrich the visual representation before
finetuning on Places-LT (♠ in Table 2). Under this scheme, our TACKLE acheives 42.6%
accuracy, surpassing counterparts by 1.4% without any designed inductive bias on long-
tailed distribution. Meanwhile, BALLAD can directly perform training on Places-LT thanks
to the additional language supervision of contrastive vision-language models. As shown in
ash grey color rows in Table 2, BALLAD beats the state-of-the-art model PaCo with ResNet-
152 by +5.3%, achieving better performance with smaller visual backbone.
iNaturalist-2018. We also evaluate on iNaturalist-2018, a naturally long-tailed distribution
dataset to demonstrate the value of BALLAD and TACKLE on real-world scenes. As is
illustrated in Table 3, BALLAD boosts the recognition accuracy by 1.0% (74.2% vs 73.2%),
0.4% (74.2% vs 73.8%) compared with randomly and CLIP initialized PaCo respectively.
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Method
ImageNet-LT

Backbone overall
τ-normalized [16] RN50 46.7

LWS [16] RN50 47.7
Blanced Softmax [28] RN50 55.0

RIDE [37] RN50 55.4
PaCo [4] RN50 57.0

τ-normalized [16] RN50∗ 51.3
LWS [16] RN50∗ 52.1
PaCo [4] RN50∗ 60.2

BALLAD RN50∗ 67.2
τ-normalized [16] RX50 49.4

LWS [16] RX50 49.9
ResLT [3] RX50 52.9

Blanced Softmax [28] RX50 56.2
RIDE [37] RX50 56.8
PaCo [4] RX50 58.2
TACKLE RX50 60.6
TADE [41] RX50 58.8

τ-normalized [16] RX101 49.6
LWS [16] RX101 50.1
ResLT [3] RX101 55.1

Blanced Softmax [28] RX101 58.0
PaCo [4] RX101 60.0
TACKLE RX101 62.5
BALLAD RN101∗ 70.5
BALLAD V-B/16∗ 75.7
BALLAD RN50×16∗ 76.5

Table 1: Long-tailed recognition accuracy on
ImageNet-LT for different methods and back-
bones. ∗ means initializing visual encoder
with pretrained weights of CLIP.

Method Places-LT
Backbone overall

OLTR [22] RN152♠ 35.9
cRT [16] RN152♠ 36.7

τ-normalized [16] RN152♠ 37.9
LWS [16] RN152♠ 37.6

Blanced Softmax [28] RN152♠ 38.6
ResLT [3] RN152♠ 39.8
PaCo [4] RN152♠ 41.2
TACKLE RN152♠ 42.6
BALLAD RN50∗ 46.5
BALLAD RN101∗ 47.9
BALLAD V-B/16∗ 49.5
BALLAD RN50×16∗ 49.3

Table 2: Long-tailed recognition accu-
racy on Places-LT for different methods.

Method iNaturalist-2018
Backbone Accuracy(%)

OLTR [22] RN50 63.9
LWS [16] RN50 65.9
cRT [16] RN50 67.6

τ-normalized [16] RN50 69.3
LADE [11] RN50 69.3

RIDE (2 experts) [37] RN50 71.4
ResLT [3] RN50 72.3

RIDE (4 experts) [37] RN50 72.6
TADE [41] RN50 72.9
PaCo [4] RN50 73.2
TACKLE RN50 74.4
PaCo [4] RN50∗ 73.8

BALLAD RN50∗ 74.2

Table 3: Long-tailed recognition ac-
curacy on iNaturalist-2018 for different
methods. ∗ means initializing visual en-
coder with pretrained weights of CLIP.

TACKLE achieves 74.4% with randomly initialized ResNet-50 backbone, surpassing the
PaCo by 1.2% under the same configuration.

3.3 BALLAD Ablations
In this section, we first conduct extensive ablation studies to validate the design choices of
BALLAD from aspects of finetuning, adapting and re-balancing.
Finetune the Vision-Language Model. To empirically discover how to finetune vision-
language models contrastively in BALLAD, we probe the finetuning process by freezing
the pretrained image and text encoder respectively. When both encoders are frozen, the
model directly perform zero-shot predictions. From Table 4, we can easily find the following
pattern – as more components are finetuned in CLIP, more accuracy improvement is obtained
for many-shot categories whereas more accuracy drop happens in few-shot division. We
hypothesize it is because the many-shot classes dominate the visual feature space during
finetuning. Therefore, for finetuning phase (phase A), it is necessary to adapt CLIP on
specific long-tailed dataset as much as possible, and we choose to finetune both the vision
and language branches of CLIP.
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Vision Language many medium few overall
- - 59.4 57.5 57.6 58.2
! - 70.4 65.4 58.0 66.3
- ! 70.6 65.4 55.9 66.1
! ! 71.3 65.4 54.1 66.1

Table 4: Different methods of finetuning CLIP
on ImageNet-LT.

Adapting Decouple overall acc
- - 58.2
! - 66.0
! ! 67.2

Table 5: Influence of adapting and decoupling.

Backbones many medium few overall
DeiT-S [34] 49.7 22.7 6.3 30.8
CTN-L [7] 70.9 39.7 12.6 48.0

DeiT-S∗ [34] 73.2 59.3 52.3 63.7
CTN-L∗ [7] 78.5 62.8 50.2 67.1

Table 6: TACKLE performance of ViTs-
like backbones on ImageNet-LT. ∗ means
training with additional retrieved images
collected by TACKLE.

Backbones CLIP many medium few overall
DeiT-S [34] - 73.2 59.3 52.3 63.7
CTN-L [7] - 78.5 62.8 50.2 67.1
DeiT-S [34] ! 74.3 62.8 58.1 66.6
CTN-L [7] ! 78.8 65.5 55.9 69.3

Table 7: Ensembling TACKLE and CLIP results
on ImageNet-LT.

Decouple Finetuning and Adapting. As demonstrated in Sec. 2.2, we decouple the train-
ing of BALLAD into finetuning (Phase A) and adapting (Phase B). An alternative scheme
is to jointly train the CLIP and linear adapter rather than decoupling the training processes.
According to Table 5 the decoupled training of CLIP and linear adapter can largely boost
the accuracy from 66.0% to 67.2%. We visualize the joint and decoupling training schemes
using t-SNE [35] and present the results in the Fig. 2. Compared with joint training, de-
coupled training better separates the tail-class feature embeddings from head-classes. This
demonstrates that the proposed decoupled training of vision-language model and adapter is
effective to handle long-tailed distribution.

3.4 TACKLE Experiments

ViTs-like Backbone Results. An important merit of TACKLE design is making no pre-
sumption of backbone choices while leveraging the linguistic and conceptual knowledge of
pretrained vision-language models. Therefore, we can flexibly design the visual backbones
to explore more effective and efficient information aggregation mechanism for feature ex-
traction. Table 6 varies the visual encoder in TACKLE with ViTs-like backbones. The
training settings are the same with the implementation details of TACKLE. The additional
images obtained from TACKLE-guided retrieval obviously replenish data deficiency by dra-
matically improving the few-shot performance under the same configuration, maximally by
46.0% and 37.6% on the DeiT-S [34] and CONTAINER-LIGHT [7] backbones, respectively.
Ensemble TACKLE with VL Model. Model ensemble strategy is also widely utilized
in tackling long-tailed distribution [38, 41]. We validate that ensembling our TACKLE-
trained downstream visual encoder with VL model like CLIP largely boosts the accuracy as
results shown in Table 7. Logits independently generated by TACKLE classifier and cosine
similarity matrix of CLIP are ensembled together proportionally to fuse both the in and out-
of-distribution knowledge. Notably, significant boosts of few-shot classes imply the two
kinds of knowledge is complementary, despite the TACKLE is trained under the guidance
of VL models via retrieved images.
Conceptual Knowledge Transfer. We visualize some web images retrieved by TACKLE
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Figure 2: Comparisons of training vision-language model and linear adapter decoupled and
jointly.

as shown in Appendix C.6 in supplementary material. The conceptual language encoders
of VL models provide linguistic hints to help conceive visual objects, which is the key of
success in BALLAD. However, we show that TACKLE can transfer the conceptual knowl-
edge without finetuning as the retrieved images complement target datasets from various
perspectives (e.g., cartoon, mock-up, and design diagram). This proves that diverse images
can facilitate visual encoders to understand real-world concepts more comprehensively.

4 Conclusion

This paper aims to unleash the potential of pretrained Vision-Language models for long-
tailed visual recognition. Specifically, we first propose a contrastive finetuning framework
named BALLAD, which decouples the whole process into finetuning and adapting. At first
stage, the pretrained visual and linguistic encoders are finetuned to take long-tailed distribu-
tion knowledge into account. Then, we adapt the finetuned VL model with a balanced linear
adapter to re-balance the new knowledge. The adapting can be regarded as reserving out-of-
distribution knowledge of pretrained VL models as the visual and linguistic backbones are
frozen. Moreover, we propose a non-parametric strategy TACKLE to leverage VL model by
retrieving k−nearest samples from external memory under the guidance of linguistic hints.
The scheme of retrieving enjoys merits of transferring conceptual knowledge from pretrained
VL model into external images and making no presumption of downstream visual encoder.
Extensive experiments on both artificial and real-world long-tailed datasets demonstrate the
effectiveness of the proposed BALLAD and TACKLE approaches.
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