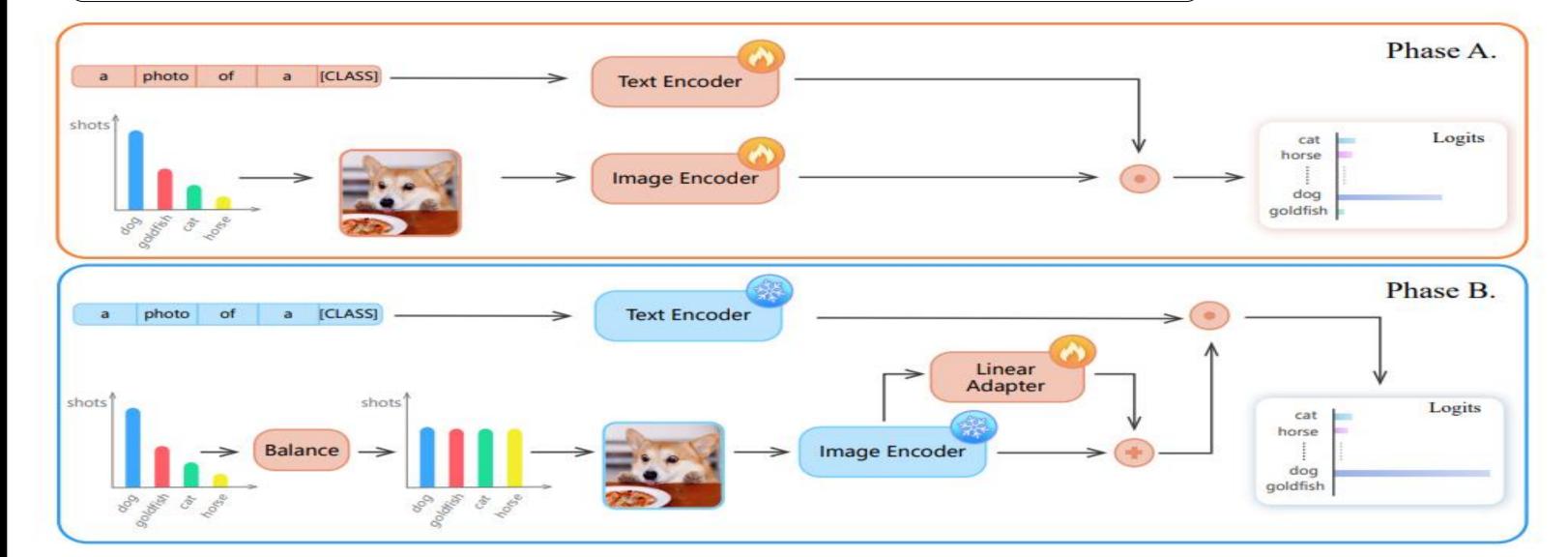


Unleashing the Potential of Vision-Language Models for Long-Tailed Visual Recognition


Teli Ma¹, Shijie Geng², Mengmeng Wang³, Sheng Xu⁴, Hongsheng Li^{1,5}, Baochang Zhang⁴, Peng Gao¹, Yu Qiao¹ ¹Shanghai AI Laboratory, ²Rutgers University, ³Zhejiang University, ⁴Beihang University, ⁵MMLab CUHK

Motivation

- All previous Long-tailed recognition models are confined to a predetermined manner which designs models entirely relying on the visual modality.
- Explore whether language modality can be effective and complementary information for this task.

BALanced Linear ADapter (BALLAD)

Qualitative Results

T-SNE visualization

(a) Decoupled Training

Web images retrieved

by TACKLE

1. Phase A: Contrastive Fine-Tuning

$$\begin{split} & \mathcal{L} = \mathcal{L}_{v \to l} + \mathcal{L}_{l \to v} \\ & = -\frac{1}{|\mathcal{T}_i^+|} \sum_{T_j \in \mathcal{T}_i^+} \log \frac{\exp \left(\mathbf{v}_i^\top \mathbf{u}_j / \tau\right)}{\sum_{T_k \in \mathscr{T}} \exp \left(\mathbf{v}_i^\top \mathbf{u}_k / \tau\right)} - \frac{1}{|\mathscr{I}_i^+|} \sum_{I_i \in \mathscr{I}_i^+} \log \frac{\exp \left(\mathbf{u}_i^\top \mathbf{v}_j / \tau\right)}{\sum_{I_k \in \mathscr{T}} \exp \left(\mathbf{u}_i^\top \mathbf{v}_k / \tau\right)}, \end{split}$$

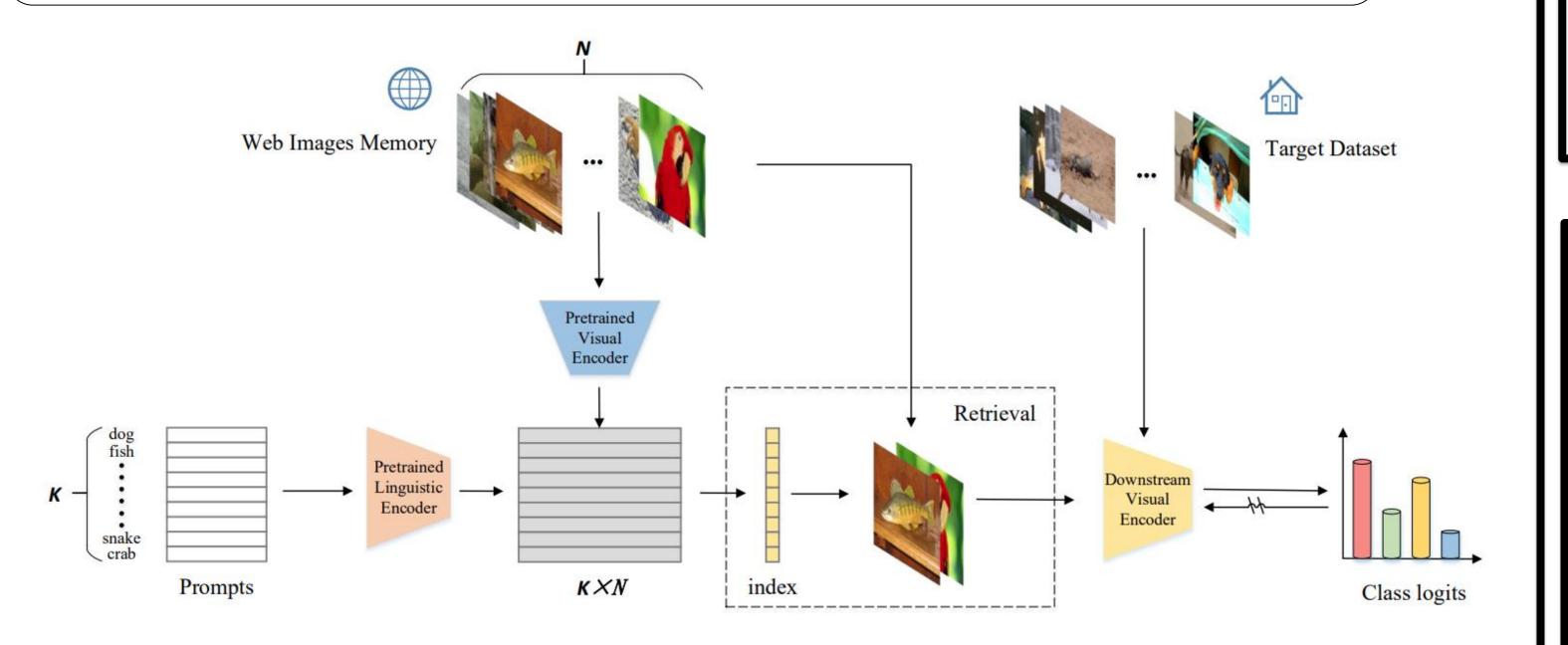
American robin

bended gecko

 water snake sea snake barn spider

centipide

african grey parrot


desert grassland whiptail lizard

(c) Legend

2. Phase B: Balanced Adapting

$$f^* = \lambda \cdot \text{ReLU}\left(\mathbf{W}^{\top} f + \mathbf{b}\right) + (1 - \lambda) \cdot f,$$

TACKLE (TrAnsfer Conceptual Knowledge from Language to imagE)

Problem of BALLAD:

Contrastive fine-tuning consumes huge computational overheads

TACKLE:

 Leveraging conceptual knowledge to generate images in an annotation-free and non-parametric manner. Construct dataset for tailed classes from web images based on the probability:

$$p_k = \frac{\exp\left(f_{\mathcal{P}(k)}f_{\mathcal{I}}^{\top}\right)/\tau}{\sum_{j=1}^K \exp\left(f_{\mathcal{P}(j)}f_{\mathcal{I}}^{\top}\right)/\tau},$$

Experiments

τ-normalized [III]	RN50	46.7
LWS [RN50	47.7
Blanced Softmax [23]	RN50	55.0
RIDE [🗖]	RN50	55.4
PaCo [■]	RN50	57.0
τ-normalized [III]	RN50*	51.3
LWS [III]	RN50*	52.1
PaCo [■]	RN50*	60.2
BALLAD	RN50*	67.2
τ-normalized [III]	RX50	49.4
LWS [III]	RX50	49.9
ResLT [█]	RX50	52.9
Blanced Softmax [23]	RX50	56.2
RIDE [🗖]	RX50	56.8
PaCo [■]	RX50	58.2
TACKLE	RX50	60.6
TADE [RX50	58.8
τ-normalized [116]	RX101	49.6
LWS [RX101	50.1
ResLT [1]	RX101	55.1
Blanced Softmax [23]	RX101	58.0
PaCo [■]	RX101	60.0
TACKLE	RX101	62.5
BALLAD	RN101*	70.5
BALLAD	V-B/16*	75.7
BALLAD	RN50×16*	76.5

	Places-	-IT	
Method	Backbone	overall	Ctata of the art
OLTR [22]	RN152♠	35.9	√ State-of-the-art
cRT [III]	RN152♠	36.7	
τ-normalized [III]	RN152♠	37.9	on ImageNet-LT(Table 1)
LWS [III]	RN152♠	37.6	
Blanced Softmax [23]	RN152♠	38.6	
ResLT [B]	RN152♠	39.8	
PaCo [1]	RN152♠	41.2	
TACKLE	RN152♠	42.6	
BALLAD	RN50*	46.5	
BALLAD	RN101*	47.9	√ State-of-the-art
RALLAD	V-B/16*	49.5	

RN50×16* 49.3

Backbone Accuracy(9

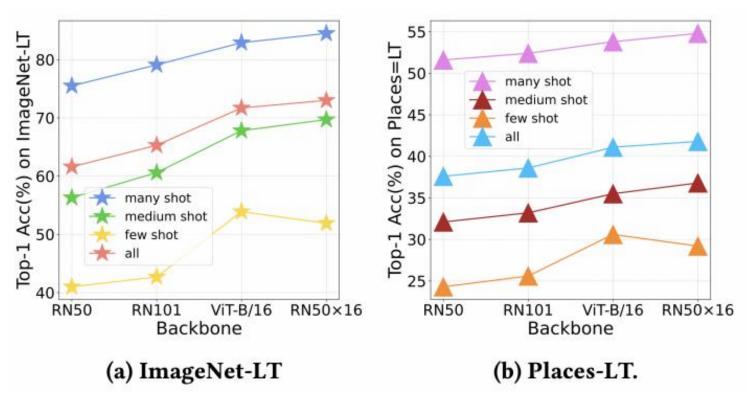
Table 2: Long-tailed recognition accu-

racy on Places-LT for different methods.

BALLAD RN50* 74.2

OLTR [22]

RIDE (2 experts) [


PaCo [1]

of-the-art

on Places-LT(Table 2)

State-of-the-art on iNaturalist-2018 (Table 3)

Table 1: Long-tailed recognition accuracy on Table 3: Long-tailed recognition ac-ImageNet-LT for different methods and back- curacy on iNaturalist-2018 for different bones. * means initializing visual encoder methods. * means initializing visual encoder with pretrained weights of CLIP. with pretrained weights of CLIP.

Backbones	CLIP	many	medium	few	overall
DeiT-S [54]	-	73.2	59.3	52.3	63.7
CTN-L [4]	-	78.5	62.8	52.3 50.2	67.1
DeiT-S [☎]	\checkmark	74.3	62.8	58.1	66.6
CTN-L [□]	√	78.8	65.5	55.9	69.3

✓ Ensemble TACKLE and **CLIP**

✓ Effectiveness of BALLAD backbones

Visual Backbone	ImageNet-LT		Places-LT		iNaturalist-2018	
	zero-shot	BALLAD	zero-shot	BALLAD	zero-shot	BALLAD
ResNet-50	58.2	67.2 (+9)	35.3	46.5 (+11.2)	2.6	74.2 (+71.6)
ResNet-101	61.2	70.5 (+9.3)	36.2	47.9 (+11.7)	-	-
ViT-B/16	66.7	75.7 (+9)	37.8	49.5 (+11.7)	-	-
ResNet-50×16	69.0	76.5 (+ 7.5)	37.1	49.3 (+12.2)	-	-

✓ Comparison of CLIP zeroshot and BALLAD-Training