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A More Implementation Details

A.1 Web-images Datasets

We conclude the details of source datasets where we retrieve images from in TACKLE. Note
that only images are leveraged for training while captions of images are omitted.
Conceptual Captions 3M & 12M. [5, 38] Conceptual Captions 3M (CC3M) is a dataset
consisting of 3.3M images annotated with captions. All the images and their raw text de-
scriptions are collected from the web, covering a variety of styles and scenes. The CC3M
dataset is programmatically created using a Flume [4]. This pipeline processes billions of In-
ternet webpages in parallel. From these webpages, it extracts, filters, and processes candidate
< image,caption > pairs. CC12M is created due to the insight of specific downstream V+L
tasks (e.g., VQA, image captioning) can be overly restrictive if the goal is to collect large-
scale V+L annotations [5]. Compared with CC3M, CC12M has around 12.4M image-text
pairs, about 4× larger than the CC3M. It has a much lower token (word count) to type (vocab
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finetuning config value
optimizer SGD
visual learning rate 1e-5
linguistic learning rate 1e-5
weight decay 5e-4
momentum 0.9
batch size 512
epochs 50
sampler instance-aware
learning rate schedule cosine decay
adapting config value
optimizer SGD
learning rate 0.2
weight decay 5e-4
momentum 0.9
batch size 2048
epochs 10
sampler class-aware
adapting ratio λ = 0.2
learning rate schedule cosine decay
Data augmentation value
image size 224
random crop scale=(0.5,1)
interpolation BICUBIC
random horizontal flip p=0.5

Table 1: Training configs of BALLAD on ImageNet-LT.

size) ratio, indicating a longer-tail distribution and a higher diversity degree of the concepts
captured. Meanwhile, the average length of descriptions in CC12M is much longer.

SBU Captioned Photo Dataset. [33] The SBU Captioned Photo Dataset (SBU) consists of
over 1 million images with associated text descriptions. The SBU queries the Flickr using
a huge number of pairs of query terms (objects, attributes, actions, stuff, and scenes). The
querying method generates a huge number of noisy initial set of images with relevant text
descriptions. Then, the images are filtered to ensure the high-relevance and visual-descriptive
of images and textual descriptions. To encourage visual descriptiveness in the collection,
SBU selects only those images with descriptions of satisfactory length based on observed
lengths in visual descriptions.

A.2 Experimental Configurations

We provide details of training BALLAD and TACKLE in this section. The details of im-
plementation on three benchmarks can be found in Table 1, 2, 3 for BALLAD, and Table 4,
5, 6 for TACKLE.
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finetuning config value
optimizer SGD
visual learning rate 1e-5
linguistic learning rate 1e-5
weight decay 5e-4
momentum 0.9
batch size 512
epochs 50
sampler instance-aware
learning rate schedule cosine decay
adapting config value
optimizer SGD
learning rate 0.2
weight decay 5e-4
momentum 0.9
batch size 2048
epochs 10
sampler class-aware
adapting ratio λ = 0.2
learning rate schedule cosine decay
Data augmentation value
image size 224
random crop scale=(0.5,1)
interpolation BICUBIC
random horizontal flip p=0.5

Table 2: Training configs of BALLAD on Places-LT.
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finetuning config value
optimizer AdamW
visual learning rate 1e-5
linguistic learning rate 1e-6
weight decay 0.05
momentum 0.9
batch size 1024
epochs 400
sampler instance-aware
learning rate schedule cosine decay
adapting config value
optimizer AdamW
learning rate 0.2
weight decay 0.05
momentum 0.9
batch size 2048
epochs 20
sampler class-aware
adapting ratio λ = 0.2
learning rate schedule cosine decay
Data augmentation value
image size 224
random crop scale=(0.5,1)
interpolation BICUBIC
random horizontal flip p=0.5

Table 3: Training configs of BALLAD on iNaturalist-2018.
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training config value
optimizer AdamW
learning rate 1e-3
weight decay 0.05
momentum 0.9
batch size 1024
epochs 300
learning rate schedule cosine decay
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1
repeated augmentation True
Data augmentation value
image size 224
color jitter 0.4
interpolation BICUBIC
reprob 0.25
remode pixel
recount 1.0

Table 4: Training configs of TACKLE on ImageNet-LT.

training config value
optimizer AdamW
learning rate 1e-3
weight decay 0.05
momentum 0.9
batch size 1024
epochs 300
learning rate schedule cosine decay
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1
repeated augmentation True
pretrained ImageNet-1k
Data augmentation value
image size 224
color jitter 0.4
interpolation BICUBIC
reprob 0.25
remode pixel
recount 1.0

Table 5: Training configs of TACKLE on Places-LT.
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training config value
optimizer AdamW
learning rate 1e-3
weight decay 0.05
momentum 0.9
batch size 1024
epochs 300
learning rate schedule cosine decay
label smoothing 0.1
mixup 0.8
cutmix 1.0
drop path 0.1
repeated augmentation True
Data augmentation value
image size 224
color jitter 0.4
interpolation BICUBIC
reprob 0.25
remode pixel
recount 1.0

Table 6: Training configs of TACKLE on iNaturalist-2018.

A.3 Algorithm of BALLAD

The overall algorithm of finetuning and balanced adapting of BALLAD framework is shown
in Algorithm 1.

A.4 Text Prompting

Prompt engineering is initially proposed for knowledge probing in large pretrained language
models [19, 24, 35, 40]. Prompting is adding extra instructions to task inputs to generate
specific outputs from pretrained language model. In this paper, we utilize manually designed
prompts following CLIP [36]. Specifically, a prompt template like a photo of a {CLASS} is
adopted in experiments of BALLAD. As for TACKLE, according to the statement that text-
prompts ensembling can improve model performance in CLIP [36], we leverage ensembled
prompts in TACKLE. The emsembled prompts prefix consist of: ’a bad photo of a .’, ’a
photo of many .’, ’a sculpture of a .’, ’a photo of the hard to see .’, ’a low resolution photo of
the .’, ’a rendering of a .’, ’graffiti of a .’, ’a bad photo of the .’, ’a cropped photo of the .’, ’a
tattoo of a .’, ’the embroidered .’, ’a photo of a hard to see .’, ’a bright photo of a .’, ’a photo
of a clean .’, ’a photo of a dirty .’, ’a dark photo of the .’, ’a drawing of a .’, ’a photo of my
.’, ’the plastic .’, ’a photo of the cool .’, ’a close-up photo of a .’, ’a black and white photo of
the .’, ’a painting of the .’, ’a painting of a .’, ’a pixelated photo of the .’, ’a sculpture of the .’,
’a bright photo of the .’, ’a cropped photo of a .’, ’a plastic .’, ’a photo of the dirty .’, ’a jpeg
corrupted photo of a .’, ’a blurry photo of the .’, ’a photo of the .’, ’a good photo of the .’, ’a
rendering of the .’, ’a in a video game.’, ’a photo of one .’, ’a doodle of a .’, ’a close-up photo
of the .’, ’a photo of a .’, ’the origami .’, ’the in a video game.’, ’a sketch of a .’, ’a doodle of
the .’, ’a origami .’, ’a low resolution photo of a .’, ’the toy .’, ’a rendition of the .’, ’a photo
of the clean .’, ’a photo of a large .’, ’a rendition of a .’, ’a photo of a nice .’, ’a photo of a
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Algorithm 1 Two-phases training of BALLAD

Require: Training samples {(III,y)}, visual and language encoder Venc, Lenc, linear adapter
LA
Initialize Venc, Lenc with web-data pretrained parameters Θv and Θl
for epoch = 1, ...,NA do ▷ Phase A

for minibatch B ∈ {(III,y)} do
fff v←Venc(III) ∈ Rdv

TTT ← tokenize(y)
fff l ←Lenc(TTT ) ∈ Rdl

Project into embedding space u,v as Eq.(1)
Compute loss L ←Lv→l +Ll→v as Eq.(2)
Update Θv and Θl

end for
end for
Initialize ΘLA randomly for LA ▷ Phase B
Freeze Θv and Θl
for epoch = 1, ...,NB do

for minibatch B ∈ {Balanced(III,y)} do
fff v← λLA(Venc(III))+(1−λ )Venc(III) ∈ Rdv

TTT ← tokenize(y)
fff l ←Lenc(TTT ) ∈ Rdl

Project into embedding space u,v as Eq.(1)

pi←
exp(v⊤ui)/τ

∑
K
j=1 exp(v⊤u j)/τ

Compute loss L ←CELoss(p,y)
Update ΘLA

end for
end for
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weird .’, ’a blurry photo of a .’, ’a cartoon .’, ’art of a .’, ’a sketch of the .’, ’a embroidered .’,
’a pixelated photo of a .’, ’itap of the .’, ’a jpeg corrupted photo of the .’, ’a good photo of a
.’, ’a plushie .’, ’a photo of the nice .’, ’a photo of the small .’, ’a photo of the weird .’, ’the
cartoon .’, ’art of the .’, ’a drawing of the .’, ’a photo of the large .’, ’a black and white photo
of a .’, ’the plushie .’, ’a dark photo of a .’, ’itap of a .’, ’graffiti of the .’, ’a toy .’, ’itap of my
.’, ’a photo of a cool .’, ’a photo of a small .’, ’a tattoo of the .’,

B Related Work
Contrastive Vision-Language Model. Contrastive representation learning has been widely
adopted to fulfill self-supervised pretraining in various AI domains[2, 3, 6, 14, 15, 32]. Re-
cently, the intersection of vision and language [1, 7, 12, 23, 31, 39, 48] also experienced
a revolution sparked by contrastive representation learning. Contrastive vision-language
models like CLIP [36] and ALIGN [18] demonstrate promising zero-shot performances on
various visual search and recognition tasks. Learning directly from natural language su-
pervisions that contain rich visual concepts, they are very flexible and robust to distribu-
tion variations across different domains. The success of CLIP and ALIGN has enlightened
many downstream vision-language tasks. For instance, DeCLIP [25] proposes to utilize
self-, multi-view, and nearest-neighbor supervisions among the image-text pairs for data ef-
ficient pretraining of CLIP. On visual classification tasks, CLIP-Adapter [13] argues that
fine-tuning contrastive vision-language models with linear adapters is a better alternative
to prompt tuning. For video related tasks, VideoCLIP [46] performs contrastive pretraining
with video-text pairs for zero-shot video-text understanding. ActionCLIP [43] presents a new
“pretrain, prompt and fine-tune” paradigm leveraging pretrained vision-language models for
zero-shot/few-shot action recognition. CLIP-It [30] designs a language-guided multimodal
transformer based on CLIP to address query-focused video summarization. Moreover, CLI-
Port [41] combines CLIP with Transporter [49] to endow a robot with the ability of semantic
understanding and spatial perception. In this paper, we demonstrate that contrastive vision-
language models can also facilitate visual recognition under long-tailed class distribution
setups if properly trained.
Long-Tailed Recognition. Long-tailed recognition [53] is a practical and challenging prob-
lem in vision domain. General visual models will suffer from severe performance degrada-
tion under such imbalanced class distributions. A great number of approaches [8, 9, 10,
17, 29, 34, 37, 44, 47, 51] have been proposed to address LTR from different perspec-
tives. An intuitive solution is to directly re-balance the number of training samples across all
classes [21, 54]. However, naively adjusting the skewness of training samples may lead to
the overfitting of tail classes. Better alternatives include loss re-weighting [16, 20, 26] and
logit adjustment [29, 50] based on label frequencies. Though efficacious for long-tailed dis-
tribution, above methods all sacrifice the performance of head classes at varying levels. To
address the limitations, researchers turn to explore new network architectures and training
paradigms. Typically, long-tail recognition models contain two key components – feature
extractor and classifier. For each component, there are corresponding approaches by either
designing better classifier [27, 42, 45] or learning reliable representations [28, 55]. In terms
of new training frameworks, existing efforts seek to divide a one-stage training paradigm
into two stages. For example, decoupled training approaches [21, 22] conduct representa-
tion learning and classifier training in a separate manner. Furthermore, ensemble learning
schemes [52, 54] first learn multiple experts with different data sub-groups and then merge
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Visual Backbone ImageNet-LT Places-LT iNaturalist-2018
zero-shot BALLAD zero-shot BALLAD zero-shot BALLAD

ResNet-50 58.2 67.2 (+9) 35.3 46.5 (+11.2) 2.6 74.2 (+71.6)
ResNet-101 61.2 70.5 (+9.3) 36.2 47.9 (+11.7) - -

ViT-B/16 66.7 75.7 (+9) 37.8 49.5 (+11.7) - -
ResNet-50×16 69.0 76.5 (+7.5) 37.1 49.3 (+12.2) - -

Table 7: Top-1 accuracy of zero-shot CLIP and TACKLE-training.

their complementary knowledge to handle LTR. We borrow these ideas to optimize the fine-
tuning of VL models.

C More Ablations

C.1 Zero-shot Performance.
Comparison with zero-shot performance of CLIP in Table 7 shows promising improvements
among all the backbones and all datasets, demonstrating the effectiveness of our BALLAD
finetuning strategy.

C.2 Visual Backbones.
In BALLAD, we try CLIP with different visual backbones to explore its influence on final
performance of TACKLE. We report the finetuning results of different backbones in Fig-
ure 1 on both ImageNet-LT and Places-LT benchmarks. When the visual backbone becomes
deeper and larger, the finetuned performance is also gradually improved for all, many-shot,
and medium-shot categories. Surprisingly, the Vision Transformer structure [11] achieves the
best accuracy in few-shot subset, probably owing to multi-head self-attention mechanism’s
ability in capturing minor features.

Figure 1: Comparisons between several visual backbones for ImageNet-LT (left) and Places-
LT (right).
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C.3 The Effectiveness of Pretrained Weights.
In Table 8, we validate the effectiveness of pretrained CLIP encoder weights in BALLAD
compared with randomly initialized visual and linguistic encoders. All the four ablations are
conducted on finetuning phase without data re-balancing for 50 epochs. The large gaps be-
tween random and pretrained CLIP initialization demonstrate the advantage of utilizing pre-
trained contrastive vision-language models. Besides, we find that visual encoder has much
more influence than text encoder on the performance as random initialized vision encoder
drops the accuracy close to zero. Note that poor performance of random initialization is pri-
marily attributed to short training periods and pretrained vision-language weights fastening
the convergence largely.

Vision Language many medium few overall
random random 0.3 0.0 0.0 0.1
random CLIP 0.3 0.0 0.0 0.1
CLIP random 36.8 2.9 0.0 15.6
CLIP CLIP 75.5 56.3 41.0 61.6

Table 8: Ablations of pretrained vision-language weights on ImageNet-LT dataset. CLIP
means using pre-trained weights as initialization and random represents random initializa-
tion.

C.4 Variants of Linear Adapter.
Since CLIP has dual encoders, the auxiliary linear adapter could be added to either or both
of the two branches. As reported in Table 9, we try linear adapter for adapting visual and
language encoders respectively. From the table, we can find that applying the linear adapter
to the visual branch of CLIP achieves the best overall performance and is the optimal choice.

V-Adapter L-Adapter many medium few overall
! - 71.0 66.3 59.5 67.2
- ! 71.0 66.2 59.0 67.0
! ! 70.6 66.2 58.4 66.8

Table 9: Variants of linear adapter. V-Adapter and L-Adapter represents using linear adapter
layer to adapt visual and language encoders respectively. All results are trained on ImageNet-
LT for 10 epochs.

C.5 Where to balance.
Here, we compare re-balancing the long-tailed data distribution on either or both of two
phases in BALLAD. The experiments are performed on ImageNet-LT and Places-LT datasets
with ResNet-50-backboned CLIP. As mentioned earlier, many-shot categories dominate the
feature space of long-tailed distribution. The performance drops of many-shot categories
on both datasets, as reported in Table 10, suggest that balancing during Phase A tends to
sacrifice many-shot representations. Since Phase A is mainly designed for updating repre-
sentations on a new domain, we thereby abandon Phase-A data balancing.

When applying balancing strategies to Phase B alone, BALLAD can achieve a more
balanced performance for different shots and improve the overall top-1 accuracy thanks to
the rich features learned from Phase A.
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Dataset Balance many medium few overallPhase A Phase B

ImageNet-LT

- - 77.3 57.4 39.0 62.6
! - 76.6 58.4 42.7 63.3
! ! 70.7 66.2 58.5 66.9
- ! 71.0 66.3 59.5 67.2

Places-LT

- - 52.7 32.9 23.4 38.2
! - 51.3 33.2 25.5 38.2
! ! 44.6 46.7 44.1 45.5
- ! 46.7 48.0 42.7 46.5

Table 10: Ablations on where to employ balance strategies. On both ImageNet-LT and
Places-LT, balance only in Phase B makes BALLAD to achieve the best performance.

Tench

Duck

Race car

Figure 2: Web images retrieved by TACKLE using linguistic conceptual knowledge.

C.6 Conceptual Knowledge Transfer Visualization.
We visualize some web images retrieved by TACKLE as shown in Fig. 2. The conceptual
language encoders of VL models provide linguistic hints to help conceive visual objects,
which is the key of success in BALLAD. However, we show that TACKLE can transfer the
conceptual knowledge without finetuning as the retrieved images complement target datasets
from various perspectives (e.g., cartoon, mock-up, and design diagram as shown in Fig. 2).
This proves that diverse images can facilitate visual encoders to understand real-world con-
cepts more comprehensively.
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