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1 5-shot experiments

For the 5-shot case, we experiment with two different ways of averaging the support in-
stances to form a prototype. Pre-avg averages the support instances before the BaseTrans-
former. The closest base instances in this case are sampled randomly from the 5 closest
base classes using semantic similarity as described in Section 3.4 in the main paper. In con-
trast, for post-avg we adapt each support instance and its corresponding set of closest base
instances independently and the prototype is obtained by averaging the adapted support in-
stances after the BaseTransformer. Table 3 reports the results for both pre-avg and post-avg
for 5-shot classification on the mini-ImageNet dataset using a ResNet12 encoder. Here we
can see that pre-avg works much better than post-avg for the ResNet12 encoder. We believe
that this could be because averaging the support instances results in a more robust input to
the BaseTransformer, aiding in its training.

2 Tiered-ImageNet and CUB detailed results

Detailed results with 95% confidence intervals are reported for the tiered-ImageNet and CUB
datasets in Table 1 and Table 2 respectively. We have reported tiered-ImageNet results only
for the ResNet12 encoder.

3 Comparison with Semantic knowledge baselines

Previous methods that use semantic knowledge [1, 6, 7, 10] use it explicitly to structure the
feature space, while we use it only for querying. Despite this, our method outperforms all
these methods (see Table 4).
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Table 1: 5-way 1-shot and 5-way 5-shot classification accuracy (%) on tiered-ImageNet
dataset for ResNet-12. The numbers in bold are the best performing methods for the corre-
sponding setting.

Setups 1-shot 5-shot

ProtoNets [8] 65.65±0.92 83.40±0.65
SimpleShot [9] 69.75±0.20 85.31±0.15
FEAT [12] 70.80±0.23 84.79±0.16
CAN [3] 69.89±0.51 84.23±0.37
DeepEMD [13] 71.16±0.87 86.030.58
IEPT [14] 72.24±0.50 86.73±0.34
MELR [2] 72.14±0.51 87.01±0.35
InfoPatch [4] 71.51±0.52 85.44±0.35
DMF [11] 71.89±0.52 85.96±0.35
META-QDA [15] 69.97±0.52 85.51±0.58
PAL [5] 72.25±0.72 86.95±0.47

BaseTransformer 72.46±0.19 84.96±0.18

Table 2: 5-way 1-shot and 5 way 5-shot classification accuracy (%) on CUB dataset. The
numbers in bold are the best performing methods for the corresponding setting.

Setups 1-shot 5-shot
Backbone Conv4-64 ResNet12 Conv4-64 ResNet12

ProtoNets [8] 51.31±0.89 66.09±0.92 70.77±0.70 82.50±0.58
FEAT [12] 68.87±0.22 - 82.90±0.15 -
DeepEMD [13] - 75.65±0.83 - 88.69±0.50
IEPT [14] 69.97±0.49 - 84.33±0.33 -
MELR [2] 70.26±0.50 - 85.01±0.32 -

BaseTransformer 72.15±0.20 82.27±0.19 82.12±0.21 90.64±0.18

4 Visualization of learnt attention over base datapoints

We visualize the attention maps learnt by the BaseTransformer in Fig. 1. These are obtained
by overlaying the resized attention map over the corresponding image of base instance se-
lected by the querying function. We can see that for each support image, BaseTransformer
has learnt to attend to visually similar regions of base instances. For example (Fig. 1 quad-
rant 2), for support instance nematode, the BaseTransformer learns to attend to the tentacle
of jelly fish or the legs of harvestman to improve the prototype representation. It is also worth
noting that in some cases the BaseTransformer is successful in identifying multiple visually
similar features in base instance images when there are multiple instances of the class in one
image. For example (Fig. 1 quadrant 4), for golden retriever, the BaseTransformer attends
to two instances of gordon setter without being explicitly trained to identify multiple gordon
setters.
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Table 3: Results for different setups
considered for averaging of support
instances in 5-shot setting.

Setup 5-shot

Pre-avg 78.38±0.23
Post-avg 82.05±0.19

Table 4: Comparison with semantic knowledge
baselines

Method mini 1-shot CUB 1-shot tiered 1-shot

RS_FSL [1] 65.33±0.83 65.66±0.90 -
MS [7] 67.3 76.1 -
AM3 [10] 65.30±0.49 74.1 69.08±0.47
KTN [6] 64.42 - -

BT (Ours) 70.88±0.17 82.27±0.19 72.46±0.19

Figure 1: Left: support instance; right: the three closest base instances (top) and attention
maps overlaid over the closest base instances (bottom). It can be seen that BaseTransformers
learns to select visually similar features from the base feature space using the learnt part
based correspondences. Warmer color corresponds to higher attention weight.
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