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Abstract
Data augmentation is a key element for training accurate models by reducing over-

fitting and improving generalization. For image classification, the most popular data
augmentation techniques range from simple photometric and geometrical transforma-
tions, to more complex methods that use visual saliency to craft new training examples.
As augmentation methods get more complex, their ability to increase the test accuracy
improves, yet, such methods become cumbersome, inefficient and lead to poor out-of-
domain generalization, as we show in this paper. This motivates a new augmentation
technique that allows for high accuracy gains while being simple, efficient (i.e., minimal
computation overhead) and generalizable. To this end, we introduce Saliency-Guided
Mixup with Optimal Rearrangements (SAGE), which creates new training examples
by rearranging and mixing image pairs using visual saliency as guidance. By explic-
itly leveraging saliency, SAGE promotes discriminative foreground objects and pro-
duces informative new images useful for training. We demonstrate on CIFAR-10 and
CIFAR-100 that SAGE achieves better or comparable performance to the state of the art
while being more efficient. Additionally, evaluations in the out-of-distribution setting,
and few-shot learning on mini-ImageNet, show that SAGE achieves improved gener-
alization performance without trading off robustness. Our source code is available at
https://github.com/SamsungLabs/SAGE.

1 Introduction
Data augmentation (DA) methods synthetically expand a dataset by applying transformations
on the available examples, with the goal of reducing overfitting and improving generalization
˚ Work done during an internship at Samsung AI Centre Toronto
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Batch Mixup[27] CutMix[25] SaliencyMix[21] Puzzle Mix[11] Co-Mixup[12] SAGE (ours)

Figure 1: Comparison of data augmentation methods. Thanks to the saliency-guided
mixing and image rearrangements, SAGE produces more meaningful and informative scenes,
as verified in our experiments.

in models trained on these datasets. In computer vision, conventional DA techniques are
typically based on random geometric (translation, rotation and flipping) and photometric
(contrast, brightness and sharpness) transformations [2, 3, 14, 18]. While these techniques are
already effective, they merely create slightly altered copies of the original images and thus
introduce limited diversity in the augmented dataset. A more advanced DA [25, 27] combines
multiple training examples into a new image-label pair. By augmenting both the image and the
label space simultaneously, such approaches greatly increase the diversity of the augmented
set. Consequently, they substantially improve model generalization, without any efficiency
overhead, due to their simplicity. Nonetheless, these DA approaches are agnostic to image
semantics; they ignore object location cues, and as a result may produce ambiguous scenes
with occluded distinctive regions (see Figure 1, Mixup [27] and CutMix [25]).

To account for such shortcomings, a new line of work [8, 11, 12, 21] proposes to explicitly
use visual saliency [19] for data augmentation. Typically, a saliency map contains the
information about the importance of different image regions for the downstream task. As
a result, saliency maps implicitly contain information about objects, their locations and,
crucially, about the “informativeness” of image regions. Previous methods [11, 12, 21] take
full advantage of the saliency information, and formulate data augmentation as a saliency
maximization problem. Given training image patches, their augmentation “assembles” a new
image of high visual saliency. This approach greatly improves the test accuracy; however,
this comes with a large computation overhead due to the need to maximize saliency at every
training step. Moreover, as the augmented images are composed of patches, the resulting
scenes are often unrealistic (see Puzzle Mix, Co-Mixup and SaliencyMix in Figure 1), which
leads to poor out-of-distribution generalization, as shown later in our experiments. In summary,
the existing data augmentation techniques can either i) boost the test accuracy, or ii) produce
a robust model with little computational overhead; there are no methods that can do both.

To address the aforementioned drawbacks, we propose a new augmentation – Saliency-
Guided Mixup with Optimal Rearrangements (SAGE) – that provides both high accuracy
and robustness, and has minimal computation overhead. SAGE is a simple and effective DA
technique that uses visual saliency to perform optimal image blending at each spatial location,
and optimizes the relative image position such that the resulting visual saliency is maximized.
Given two images and their saliency maps, SAGE mixes the images together, such that at each
spatial location, the contribution of different images to the mix is proportional to their saliency
in that location. The corresponding label is also obtained by interpolating the original labels
based on the saliency of the corresponding images. To maximize the resulting saliency of the
mix, we find an optimal relative arrangement of the two images prior to the mixing stage. As a
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result, SAGE produces smooth and realistic images with clear and distinct foreground objects
(see Figure 1), unlike other augmentation techniques. Thanks to our efficient implementation,
SAGE has virtually no computation overhead beyond obtaining the saliency information.
Furthermore, our computations are partially shared between the saliency masks and the
training gradients, which further decreases the amortized training time.
Contributions. We make the following three contributions: (i) We introduce SAGE, a DA
method to generate novel training examples by mixing image pairs based on their visual
saliency, which promotes discriminative foreground objects in the mix. (ii) SAGE achieves
test accuracy better than or comparable to state-of-the-art augmentation techniques, without
incurring significant computation overhead. (iii) Through robustness evaluations on perturbed
test data, we show that SAGE improves test accuracy without trading off robustness.

2 Related Work
In this section, we review data augmentation techniques that go beyond simple geometrical
and color transformations to improve generalization. A popular approach is to synthesize new
training input-output pairs by combining information from multiple raw samples. Mixup [27]
creates a new image-label pair by linearly interpolating both the input and output space. In con-
trast, Manifold Mixup [22] and HypMix [16] apply interpolation at the feature level. Others
create new training samples by “copy-pasting” patches from one image to another [6, 7, 25].
This class of methods is very efficient and simple to implement. However, a common
drawback of these approaches is that they do not take image semantics into account when per-
forming augmentation. This potentially encourages the model to generalize using completely
irrelevant information from the new training data, leading to inferior generalization.

To address this problem, recent work explicitly uses visual saliency information in the
DA process. KeepAugment [8] leverages input saliency to improve existing DA techniques,
e.g., Cutout [4], by always keeping the important regions untouched during augmentation.
SaliencyMix [21] improves CutMix [25] by selecting a patch around the peak salient pixel
location in the source image and mixing it with the target image. Puzzle Mix formulates
DA as an optimization problem, where the objective balances saliency maximization, local
smoothness and the optimal transport between data pairs [11]. Co-Mixup [12] extends this
idea by encouraging the diversity of the augmentation when mixing a collection of inputs,
and thus further complicates the optimization objective. The need to solve the optimization
problem at every step significantly slows down the training, which may be prohibitive in some
situations. Our saliency-guided method not only reduces this computational overhead, but
also generates more plausible augmented images that result in improved test accuracy and
out-of-distribution generalization.

3 Technical Approach
The main idea behind SAGE is to synthesize novel images (with their labels) by blending
pairs of training samples, using spatial saliency information as guidance for optimal blending.
As illustrated in Fig. 2, our method consists of three independent components: i) saliency
mask generation (Sec. 3.1), ii) the “Optimal Rearrangement” module (Sec. 3.3), and iii)
the “Saliency-guided Mixup” module (Sec 3.2). All chained together, they form our SAGE
approach. Below, we elaborate on each of the components and conclude with a discussion on
the efficiency of our pipeline in Sec. 3.4.
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3. Find Optimal Rearrangement
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Figure 2: SAGE overview. Given the original images, we first compute saliency maps. Next,
we find the best rearrangement of the images that maximizes the total saliency (in the green
box). Finally, we use our saliency-guided Mixup to fuse the overlapping image parts and
derive the new label. As a result, SAGE produces smooth, realistic and informative scenes.

3.1 Computing Saliency Maps
We define the saliency of each image pixel as its importance in making the correct prediction,
using a given vision model. More formally, we are given a training sample, px,yq, where
x P Rdˆdˆ3 is an RGB image and y P RC is the corresponding one-hot label vector, a classifier,
fθ p¨q, that is the current partially trained model, and our task loss, ℓp fθ pxq,yq, measuring
the discrepancy between the classifier’s output and the true label. We define the saliency,
s P Rdˆd , as the magnitude of the gradient with respect to the input image,

spxq “ |∇xℓp fθ pxq,yq|l2,3 , (1)

where |¨|l2,3 denotes the l2-norm along the third (color) dimension. In practice, the saliency
map tends to focus on the foreground objects useful for classification and ignores irrelevant
background. Note that our saliency definition differs from others [17, 19] in that we consider
the gradient of the full loss, while previous work consider the gradient of the ground-truth
class activation with respect to the input image. We find that our definition is advantageous for
data augmentation, and additionally allows for more efficient training, as detailed in Sec. 3.4.

3.2 Saliency-guided Mixup
Before describing our Saliency-guided Mixup, we revisit the original Mixup [27]. Mixup
creates a new training sample, x1, by linearly mixing pairs of training samples, x0 and x1, i.e.,
x1 “ λ ¨ x0 ` p1 ´ λ q ¨ x1, and their corresponding labels, i.e., y1 “ λ ¨ y0 ` p1 ´ λ q ¨ y1, where
λ P r0,1s. While simple and effective, Mixup has a notable drawback, namely it ignores
the image semantics. That is, at every pixel location, the contribution of x0 and x1 to the
final image is constant. As Fig. 3 (e) shows, this may lead to prominent image regions being
suppressed by the background, which is not ideal for data augmentation [11, 12].

To address this shortcoming, we propose Saliency-guided Mixup, where at every image
location in x1, the mixing ratio between x0 and x1 is different, defined by the saliency of the
corresponding image regions. More formally, given two images, x0 and x1, and their saliency
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Figure 3: Comparison between Saliency-guided Mixup and original Mixup. Given the a)
original images with b) saliency maps, our Saliency Mixup computes d) the Mixing Mask M
(given by Eq. 2) based on the relative saliency of the inputs. The values of M are represented
with a heatmap; blue areas indicate stronger contribution of image 1, red areas correspond to
image 2 being more prominent and pale areas indicate more uniform blending. Consequently,
salient regions from different images contribute to different locations and result in a realistic,
informative output c). In contrast, the original Mixup produces f) a uniform mixing mask (at
λ “ 0.5), which results in e) an unrealistic and unclear image.

maps, s0 and s1, we craft a 2D mixing mask, M P Rdˆd , and use it to mix the images:

x1 “ M d x0 ` p1 ´ Mq d x1, ; M “
s̃0

s̃0 ` s̃1 ` ζ
, (2)

where x1 P Rdˆdˆ3, s̃0 and s̃1 are spatially-normalized and Gaussian-smoothed saliency maps,
ζ is a scalar hyperparameter used to avoid division-by-zero and d denotes element-wise
product. That is, the elements in M are defined as the saliency ratio in different images at the
same location. This means that, at any given location, more prominent regions of one image
will suppress less salient regions of the other image in the final blend, x1. This strategy largely
resolves the issue with the original Mixup and leads to more informative augmentation (see
Fig 3 (e)). Lastly, we mix the labels using y1 “ γ ¨ y0 ` p1 ´ γq ¨ y1, where γ is the mean of the
mixing mask, M.

Saliency-guided Mixup, Eq. 2, is most suitable for mixing images that have salient regions
in distinct locations. When the maximally salient regions in both images spatially overlap, the
mask, M, tends to suppress one or both objects, which leads to uninformative new scenes.

3.3 Optimal Rearrangements via Saliency Maximization
To produce highly-informative augmentations with Eq. 2, even when both images have
overlapping salient regions, we propose to shift one image relative to the other prior to mixing.
Our objective is to find the shift that maximizes the resulting image saliency. An example of
such rearrangements with the resulting augmentations are shown in Fig. 4. In the following,
we formalize this shifting process and describe a solution for finding the best rearrangement.

We define the translation operator that shifts a tensor z by τ “ pτi, τ jq pixels as

T pz,τqri, js “

#

zri ´ τi, j ´ τ js, if i ´ τi P r0,d ´ 1s, j ´ τ j P r0,d ´ 1s

0, otherwise
, (3)



6 MA ET AL.: SAGE: SALIENCY-GUIDED MIXUP WITH OPTIMAL REARRANGEMENTS

(a). Total saliency vpτ1q “ 0.48 (b). Total saliency vpτ2q “ 0.57 (c). Max saliency vpτ˚q “ 0.72

Figure 4: Possible rearrangements. In each example, the saliency map corresponding to the
rearrangement is shown on the left, the corresponding image (after applying Saliency-guided
Mixup) is on the right. The rearrangement maximizing the total saliency is shown in c);
clearly, it results in a denser mixed saliency, and produces a more informative image.

where zri, js is the value of z at the location pi, jq. Essentially, translation T shifts all the
values in the tensor by the given offset, τ , and zero-pads the empty space.

To quantify how successful a given rearrangement is in resolving the saliency overlap,
we measure the total saliency [11] after the rearrangement. For a given rearrangement, τ , the
total saliency, vpτq P R, is defined as follows:

vpτq “
ÿ

i, j

“

Mτ d s̃0 ` p1 ´ Mτ q dT ps̃1,τq
‰

, (4)

where T ps̃1,τq is the saliency s̃1 translated by τ and Mτ is the mixing mask (Eq. 2) computed
with s̃0 and T ps̃1,τq. Essentially, the scalar vpτq captures the total saliency after the rearrange-
ment (Eq. 3) and fusion (Eq. 4) of the individual saliency tensors. Intuitively, larger total
saliency values imply smaller overlap between the salient regions in the shifted images, x0
and T px1,τq, and suggests that the resulting mix is more informative. Thus, it is reasonable
to look for a rearrangement that maximizes the total saliency. To this end, we propose to
find the optimal rearrangement (offset), τ˚, by solving the following: τ˚ “ argmaxτPO vpτq,
where O is the space of all possible offsets (shown in Fig. 2, step 3).

Finally, we use the obtained optimal rearrangement to generate the augmented sample, x1.
This is done by applying our Saliency-guided Mixup to the rearranged image pair (shown in
Fig. 2, step 4), i.e., simply plugging the images x0 and T px1q with the corresponding saliency
s̃0 and T ps̃1q into Eq. 2. The exact data augmentation algorithm is detailed in the supplement.

3.4 Discussion
One of the advantages of SAGE over other saliency-based augmentations (e.g., [11, 12]) is its
efficiency. Here, we elaborate on our pipeline design choices and discuss their complexity.
Saliency-guided Mixup. Compared to the original Mixup blending step, our Saliency-guided
Mixup (Sec 3.2) adds a simple element-wise multiplication by the mixing mask. The cost of
this operation is negligible to our model’s runtime.
Optimal Rearrangements. As described in Sec. 3.3, to arrive at our final mixture, we
consider all possible rearrangements and select the one maximizing the total saliency, Eq. 4.
The number of rearrangements grows quadratically with image size and soon becomes the
bottleneck. To keep our method efficient, we randomly sample a small portion of all possible
arrangements (1% in all experiments), and search among them. In our experiments, this does
not affect classification performance, while greatly improving efficiency.
Saliency Computation. Computing saliency requires an extra forward and backward pass of
the model. When the existing works [11, 12] compute saliency masks, they discard all the
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Dataset Model Vanilla Mixup CutMix Manifold SaliencyMix Puzzle Mix Co-Mixup SAGE
CIFAR-10 PreActResNet18 95.07 95.97 96.27 96.28 96.15 96.62 96.23 96.95
CIFAR-100 PreActResNet18 76.80 77.40 78.96 78.51 78.85 79.65 79.68 79.91
CIFAR-100 WRN16 78.55 79.83 80.03 79.77 80.16 80.73 80.42 80.45
CIFAR-100 ResNext29 78.77 78.23 77.43 77.97 78.89 79.20 80.27 80.35

Table 1: Image classification accuracy. CIFAR-10 and CIFAR-100 results are obtained by
averaging over three independent training runs. The best numbers are in bold and the second
best numbers are underlined.

intermediate computations and only use the mask itself for DA, which essentially doubles
the training time. In contrast, SAGE saves the gradients, gs, with respect to the model
parameters, obtained in the backward pass of saliency computations. These gradients can be
combined with the standard gradients, ga, computed on SAGE-augmented images to perform
the final model update with g “ η ¨ gs ` p1 ´ ηq ¨ ga, where η P r0,1s. The hyperparameter, η ,
effectively controls how much information from the original images is used for updates versus
that of the augmented images. This trick allows us to amortize the saliency computations, and
reuse the intermediate results for the model updates. Note that this is only possible thanks to
our saliency definition (Eq. 1), which differs from the classical one [19].

4 Experiments
We demonstrate the advantage of SAGE in image classification in Sec. 4.1. Sec. 4.2 evaluates
SAGE in out-of-distribution generalization, Sec. 4.3 analyzes the efficiency of our pipeline
and Sec. 4.4 presents an ablation study of SAGE’s components. Our implementation is largely
based on the publicly available repository of Puzzle Mix1.

4.1 Image Classification
Following previous work [12], we perform evaluations on the CIFAR-10 [13] and CIFAR-
100 [13] datasets with the PreActResNet18 [10], ResNext29 [24] and WideResNet16 [26]
architectures. For all datasets and models, we follow the optimization schedule described in
Puzzle Mix and Co-Mix; training and model details are included in the supplement. For a
comprehensive comparison, we use the following DA baselines: (i) Vanilla, i.e., standard data
augmentation only, which includes random cropping and horizontal flips, (ii) Mixup [27],
(iii) CutMix [25], (iv) Manifold [22], (v) SaliencyMix [21], (vi) Puzzle Mix [11] and (vii)
Co-Mixup [12]. Note that all the baseline methods are applied on top of the standard data
augmentation. Following previous work [11, 12], we report the results averaged over three
independent training runs.

Table 1 summarizes the comparison of SAGE to the baselines, pointing to two key
observations. First, the DA techniques utilizing saliency (i.e., SaliencyMix, Puzzle Mix,
Co-Mixup and SAGE) substantially outperform other non-saliency-based variants across
almost all datasets and architectures. This clear improvement demonstrates that using image
semantics for data augmentation leads to better generalization on the test set. Second,
among saliency-based methods, SAGE is consistently the best on CIFAR-10; on CIFAR-100,

1https://github.com/snu-mllab/PuzzleMix
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Vanilla Mixup CutMix SaliencyMix Puzzle Mix Co-Mixup SAGE
77.9 78.9 78.4 78.6 78.6 79.0 79.8

Table 2: Few-shot classification accuracy on mini-ImageNet.

SAGE outperforms Puzzle Mix and Co-Mixup on PreActResNet18 and ResNext29, and
has comparable performance on WideResNet. SAGE also outperforms SaliencyMix on all
tested architectures on both datasets. We attribute the advantage of SAGE to the fact that
our augmented images are smoother and more realistic, combining the advantages of Mixup
and the saliency-based methods. This is despite the fact that Puzzle Mix and Co-Mixup
are explicitly optimizing for maximum saliency, and have considerably more computational
overhead.

4.2 Out-of-distribution Generalization and Few-shot Adaptation
It is known that different DA techniques may lead to similar test accuracy improvements but
have drastically different behavior on out-of-distribution (OOD) data [22]. This phenomenon
is attributed to the difference in the quality of the learned representation. Therefore, to further
evaluate our approach, we consider generalization in the OOD setting.

In our evaluation, we test the OOD generalization in two scenarios: using corrupted test
images (with Gaussian noise or adversarial perturbations [20]) or evaluating generalization
to new categories in a few-shot setup [23]. More specifically, we test against three different
perturbations: i) Gaussian noise with zero mean and variance of 0.01, ii) ℓ8-norm bounded
attack generated using the Fast Gradient Sign Method (FGSM) [9] with ε “ 8

255 and iii) ℓ2-
norm bounded attack crafted with Fast Gradient Method (FGM) [9] with ε “ 0.5. Our choice
of the attacks and ε follows the standard practice used with the robustness benchmarks [1].
To evaluate few-shot adaptation capabilities of our model and test how well the learned
representations transfer to novel categories, we perform few-shot classification on the mini-
ImageNet dataset [23]. Additional details are provided in the supplement.

To summarize the performance on all three OOD benchmarks, we average the accuracy
across the benchmarks, and get a single score quantifying model robustness. Figure 5(a) plots
the average OOD accuracy on CIFAR-100, against the standard accuracy on the original test
set. We observe a striking difference in the robustness characteristics across different DA
methods. Notably, models trained using SAGE are much less sensitive to out-of-distribution
shifts compared to the two other saliency-based methods, i.e., Puzzle Mix and Co-Mixup,
despite comparable test accuracy improvements. Moreover, the models trained with CutMix,
Puzzle Mix and Co-Mixup have worse OOD performance compared to Vanilla training. These
methods produce augmentations with unnatural patch-like patterns, which likely leads to
unwanted properties of the learned representations. In contrast, Mixup and SAGE fuse images
in a homogeneous way, leading to models more robust to various input perturbations. Please
refer to the supplement for the full table of results and CIFAR-10 experiments.

To show OOD generalization beyond adversarial attacks, we compare SAGE to other
data augmentation techniques for few-shot classification on mini-ImageNet, where the goal
is to learn a representation that generalizes to novel categories. We follow the setup from
previous work [5], using a single ResNet12 with the prototype classifier. As shown in Table 2,
SAGE outperforms other augmentation techniques, including Mixup (the strongest model
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Figure 5: Robustness and efficiency analysis of SAGE. (a) Robustness versus standard
accuracy in OOD generalization. The methods in the green area (i.e., Mixup and SAGE)
improve both accuracy and robustness relative to vanilla augmentation, while the others
in red (i.e., CutMix, Co-Mixup and Puzzle Mix) improve standard test accuracy at the
cost of decreased robustness. (b) Runtime comparison of SAGE and other baselines. We
estimate computation cost with a single NVIDIA Tesla T4. For SAGE, there is no noticeable
overhead besides the additional forward and backward pass to compute the saliency map
which approximately doubles the time of Vanilla training.

on adversarial perturbations). This shows that SAGE is useful in OOD scenarios beyond
Gaussian and adversarial perturbations.

4.3 Runtime Analysis
In this section, we compare the training time of different data augmentation methods running
on a single NVIDIA Tesla T4. Figure 5(b) plots each method’s average training time (GPU
hours) versus accuracy. Notably, the techniques not using saliency (i.e., Mixup, Manifold
and CutMix) are as fast as Vanilla, since the data augmentation is performed during data
loading, which does not affect the overall training time. SaliencyMix stands apart from the
other saliency-based augmentation techniques. This follows because it utilizes an external
trained saliency detector based on a shallow pre-deep learning method [15], that is fast but
considerably less capable than the deep saliency methods [19] used for the other augmentation
techniques. Consequently, SaliencyMix introduces minimal overhead; however, its improve-
ment on classification accuracy is limited. Other saliency-based methods (i.e., PuzzleMix,
Co-Mixup and SAGE) are more accurate, yet also significantly slower. Among them, SAGE
is the fastest and also the most accurate on CIFAR-100. Based on these observations, we
argue that SAGE represents a good trade-off between accuracy and efficiency overall, and is
clearly the best choice among the saliency-based methods.

4.4 Ablation Studies
In this section, we further analyze our data augmentation strategy by ablating different design
choices in the pipeline. For all the experiments, we use the same setup described in Sec. 4.1
with ResNet18 on CIFAR-10 and CIFAR-100. Please see the supplement for additional
ablations.
Saliency-guided Mixup and optimal rearrangements. The two components that make
SAGE novel are the Saliency-guided Mixup (Sec. 3.2) and the Optimal Rearrangements
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Model CIFAR-10 CIFAR-100
Vanila 95.07 76.8
SAGE w/o SM 96.53 78.89
SAGE w/o OR 96.48 78.68
SAGE 96.95 79.91

Search Space CIFAR-10 CIFAR-100
1% 96.95 79.91
10% 96.67 79.47
50% 96.58 79.40
100% 96.69 79.45

Table 3: Ablation studies of SAGE. (left) Dissecting the benefit from saliency-guided mixing
and optimal rearrangements. Here, SAGE w/o SM (without Saliency-guided Mixup), and
SAGE w/o OR (without optimal rearrangements). (right) SAGE’s accuracy depending on
the explored rearrangements. The first column indicates the size of the random portion of
rearrangements used for data augmentation.

(Sec. 3.3). Here, we evaluate SAGE with some of the components removed or replaced by
an existing technique. In particular, we evaluate i) SAGE w/o OR (i.e., without optimal
rearrangements) that always performs Saliency-guided Mixup on non-shifted images and ii)
SAGE w/o SM (i.e., without Saliency-guided Mixup) for mixing images together that simply
replaces one image region with the other image instead of performing smooth saliency-based
mixing. Examples of SAGE w/o SM and SAGE w/o OR are included in the supplement. As
shown in Table 3, each of the components is important for the final performance and thus
justifies their use.
Optimal rearrangements search space. As described in Sec. 3.4, to select a rearrangement,
we evaluate a set of locations, and proceed with the one that maximizes saliency. To speed
up the search, we only explore a random subset of all rearrangements, 1% in all previous
experiments, which suggest that our data augmentation may be sub-optimal. Table 3 shows
the model’s performance, depending on the portion of all rearrangements we consider for DA.
Surprisingly, using only 1% of the rearrangements works best. While seemingly counterintu-
itive, we hypothesize the sub-optimal rearrangements act as additional training regularization
and introduce more diversity in the augmented data.

5 Conclusion
We proposed SAGE – a new data augmentation approach that integrates visual saliency to
produce highly informative training samples. Compared to existing methods, SAGE leads
to better test accuracy, and generates more realistic training samples. Moreover, SAGE is
the only saliency-based augmentation technique that improves model robustness and OOD
performance, while incurring minimal computational overhead. In principle, SAGE is not
limited to image classification and can be easily extended to other visual tasks. We believe
that SAGE delivers a unique combination of accuracy, robustness and efficiency, and can
become the new plug-and-play data augmentation for a wide range of vision tasks.
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