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Motivation

Data augmentation is a key element for training accurate models by reducing

overfitting and improving generalization.

Conventional data augmentation techniques (photometric and

geometric transformations) merely create slightly altered copies of the

original images and thus introduce limited diversity in the augmented

dataset.

More advanced data augmentation combines multiple training

examples into a new image-label pair, leading to increased diversity of

the augmented set.

Nonetheless, these approaches are agnostic to image semantics; they

ignore object location cues, and as a result may produce ambiguous

scenes with occluded distinctive regions.

To account for such shortcomings, can we explicitly use visual saliency for

data augmentation?
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Figure 1. Comparison of data augmentation methods. Thanks to the saliency-guided

mixing and image rearrangements, SAGE produces more meaningful and informative

scenes, as verified in our experiments.

SAGE Overview

The main idea behind SAGE is to synthesize novel images (with their labels)

by blending pairs of training samples, using spatial saliency information as

guidance for optimal blending.
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Figure 2. SAGE overview. Our method consists of three independent components: i)

computing the saliency maps given the original images, ii) finding the best rearrangement

of the images that maximizes the total saliency (in the green box), and iii) fusing the

overlapping image parts and deriving the new label based on Saliency-guided Mixup. As a

result, SAGE produces smooth, realistic and informative scenes.

Computing Saliency Maps

We define the saliency of each image pixel as its importance in making the

correct prediction, using a given vision model. More formally, we are given

a training sample, (x, y), where x ∈ Rd×d×3 is an RGB image and

y ∈ RC is the corresponding one-hot label vector, and

a classifier, fθ(·), that is the current partially trained model, and our

task loss, `(fθ(x), y), measuring the discrepancy between the

classifier’s output and the true label.

We define the saliency, s ∈ Rd×d, as the magnitude of the gradient with

respect to the input image,

s(x) = |∇x`(fθ(x), y)|l2,3
, (1)

where |·|l2,3
denotes the l2-norm along the third (color) dimension. In prac-

tice, the saliency map tends to focus on the foreground objects useful for

classification and ignores irrelevant background.

Saliency-guided Mixup

We propose Saliency-guided Mixup: given two images, x0 and x1, and their

saliency maps, s0 and s1, we craft a 2D mixing mask, M ∈ Rd×d, and use it

to mix the images:

x′ = M � x0 + (1 − M) � x1, ; M = s̃0

s̃0 + s̃1 + ζ
, (2)

where x′ ∈ Rd×d×3, s̃0 and s̃1 are spatially-normalized and Gaussian-

smoothed saliencymaps, ζ is a scalar hyperparameter used to avoid division-

by-zero and � denotes element-wise product.
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Figure 3. Comparison between Saliency-guided Mixup and original Mixup. Given the a)

original images with b) saliency maps, our Saliency Mixup computes d) the Mixing Mask

M (given by Eq. 2) based on the relative saliency of the inputs. The values of M are

represented with a heatmap; blue areas indicate stronger contribution of image 1, red

areas correspond to image 2 being more prominent and pale areas indicate more uniform

blending. Consequently, salient regions from different images contribute to different

locations and result in a realistic, informative output c). In contrast, the original Mixup

produces f) a uniform mixing mask (at λ = 0.5), which results in e) an unrealistic and

unclear image.

Optimal Rearrangements via Saliency Maximization

Issue: When the maximally salient regions in both images spatially

overlap, the mask, M , tends to suppress one or both objects, which

leads to uninformative new scenes.

Solution: Shift one image relative to the other prior to mixing.

Consider a translation operator that shifts a tensor z by τ pixels as T (z, τ ).
To quantify how successful a given rearrangement is in resolving the saliency

overlap, we measure the total saliency (v(τ ) ∈ R) after the rearrangement:

v(τ ) =
∑
i,j

[
M τ � s̃0 + (1 − M τ) � T (s̃1, τ )

]
, (3)

where T (s̃1, τ ) is the saliency s̃1 translated by τ and M τ is the mixing

mask (Eq. 2) computed with s̃0 and T (s̃1, τ ). Finally, we find the optimal

rearrangement, τ ∗, by solving τ ∗ = argmaxτ∈O v(τ ), where O is the space

of all possible offsets.

a. Total saliency v(τ1) = 0.48 b. Total saliency v(τ2) = 0.57 c. Max saliency v(τ ∗) = 0.72

Figure 4. Possible rearrangements. In each example, the saliency map corresponding to

the rearrangement is shown on the left, the corresponding image is on the right. The

rearrangement maximizing the total saliency is shown in c).

Results

Dataset Model Vanilla Mixup CutMix Manifold SaliencyMix Puzzle Mix Co-Mixup SAGE

CIFAR-10 PreActResNet18 95.07 95.97 96.27 96.28 96.15 96.62 96.23 96.95

CIFAR-100 PreActResNet18 76.80 77.40 78.96 78.51 78.85 79.65 79.68 79.91

CIFAR-100 WRN16 78.55 79.83 80.03 79.77 80.16 80.73 80.42 80.45

CIFAR-100 ResNext29 78.77 78.23 77.43 77.97 78.89 79.20 80.27 80.35

Table 1. Image classification accuracy. CIFAR-10 and CIFAR-100 results are obtained by

averaging over three independent training runs.
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b. Runtime Comparison

Figure 5. Robustness and efficiency analysis of SAGE. (a) Robustness vs. standard

accuracy in OOD generalization. The methods in the green area improve both accuracy

and robustness relative to vanilla augmentation, while the others in red improve standard

test accuracy at the cost of decreased robustness. (b) Runtime comparison of SAGE and

other baselines. For SAGE, there is no noticeable overhead besides the additional

forward and backward pass to compute the saliency map which approximately doubles

the time of Vanilla training.


