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A Summary of the Supplementary Material

The supplementary material is organized as follows. In Sec. B, we describe the exact
optimization schedule and the hyperparameters used to train with SAGE and other baseline
DA frameworks. In Sec. C and Sec. D, we provide detailed results to bolster our claim on
SAGE’s improvement on OOD generalization (Sec. 4.2) and its low computation overhead
(Sec. 4.3). Pseudocode to augment data with SAGE is included in Sec. E. In Sec. F, we show
examples of augmentations using SAGE w/o SM and SAGE w/o OR (Sec. 4.4). Furthermore,
we provide additional ablation studies to verify the design choices of SAGE in Sec. G.

B Optimization schedule and hyper-parameters

Optimization schedule: Following previous work [3, 4], all models are trained using stochas-
tic gradient descent (SGD) for 300 epochs with an initial learning rate of 0.2. The learning
rate decreases by a factor of 0.1 at epoch 100 and 200. We use a momentum of 0.9 and a
weight decay of 0.0001. The above optimization schedule is used to train both CIFAR-10 and
CIFAR-100 for all models, except for Co-Mixup [4] on CIFAR-10. We notice that training
with Co-Mixup on CIFAR-10 with an initial learning rate of 0.2 results in divergence at the
beginning of the training. We find training becomes stable with an initial learning rate of 0.12.
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Training with baseline DA: We follow the hyperparameter settings used in previous work
[3, 4]. To train with Mixup [9], CutMix [8], Puzzle Mix [3] and Co-Mixup [4], we use
λ „ Betapα,αq with α “ 1.0, and use α “ 2.0 for Manifold Mixup [7]. For SaliencyMix 1,
Puzzle Mix2 and Co-Mixup3, we use the parameter settings described in author’s pub-
lic repository: pβ ,Pmixq “ p1.0,0.5q, pβ ,γ,η ,εq “ p1.2,0.5,0.2,0.8q and pβ ,γ,η ,τ,ωq “

p0.32,1.0,0.05,0.83,0.001q.
Training with SAGE: For all models and datasets, we use 1% of all possible rearrangements
(Sec. 3.3) and a smoothing parameter of σ2 “ 1.0 (Sec. 3.2). Here we use u to denote
the truncation factor (Sec. G) and use η to denote the gradient update ratio (Sec. 3.4).
On CIFAR-10 with ResNet18, we pu,ηq “ p0.6,0.7q. On CIFAR-100 with ResNet18, we
pu,ηq “ p0.5,0.7q. On CIFAR-100 with WRN16, we pu,ηq “ p0.6,0.7q. On CIFAR-100
with ResNext29, we pu,ηq “ p0.7,0.5q.

C Robustness Evaluation on CIFAR-10 and CIFAR-100

We evaluate the robustness of models trained with various baseline DA methods. In particular,
we measure the classification accuracy of models on test data perturbed using Gaussian noise
(σ2 “ 0.01) and adversarial attacks. To craft adversarial perturbations, we use ε “ 8

255 for ℓ8

bounded FGSM [2] and ε “ 0.5 for ℓ2 bounded FGM [2]. Results are based on models trained
with ResNet18. In Figure 1, we notice that models trained with SAGE achieve improved
classification accuracy on both clean and noise-perturbed test data. However, method such as
SaliencyMix, Puzzle Mix, Co-Mixup and CutMix improves generalization performance on
the test data at the cost of decreased robustness.

Perturbations Vanilla Mixup CutMix Manifold SaliencyMix Puzzle Mix Co-Mixup SAGE

Rank 4 3 8 1 6 5 7 2

FGSM (ℓ8) 79.96 80.93 79.57 85.79 80.62 81.96 78.78 83.75

FGM (ℓ2) 89.67 89.22 87.81 90.86 88.86 89.64 88.11 90.64

Gaussian 89.88 92.56 77.2 92.21 85.99 87.60 85.25 91.67

Table 1: Classification accuracy on noise perturbed CIFAR-10 test data.

Perturbations Vanilla Mixup CutMix Manifold SaliencyMix Puzzle Mix Co-Mixup SAGE

Rank 3 1 8 4 5 7 6 2

FGSM (ℓ8) 49.24 50.51 44.2 48.89 46.52 44.58 44.32 50.18

FGM (ℓ2) 62.19 63.36 55.57 61.14 59.4 58.16 58.56 62.23

Gaussian 52.68 60.76 28.06 55.47 38.21 43.96 34.46 47.68

Table 2: Classification accuracy on noise perturbed CIFAR-100 test data.

1https://github.com/afm-shahab-uddin/SaliencyMix
2https://github.com/snu-mllab/PuzzleMix
3https://github.com/snu-mllab/Co-Mixup
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Figure 1: Visualization of the standard generalization performance vs. generalization in the
OOD setting. We notice that SaliencyMix, CutMix, Co-Mixup and Puzzle Mix improves
standard test accuracy over vanilla but at a cost of decreased robustness.

D Runtime Comparison

To estimate the computation cost of various baseline DA methods, we measure the total GPU
hours required to train CIFAR-10 and CIFAR-100 using a single NVIDIA Tesla T4. Notice
training with SAGE approximately doubles the time of vanilla training due to the computation
of the saliency map; however, unlike Puzzle Mix and Co-Mixup, there is no additional
overhead in finding the optimal rearrangements to maximize the total saliency. SaliencyMix
stands apart from the other saliency-based augmentation techniques. This follows because it
utilizes an external trained saliency detector based on a shallow pre-deep learning method [5],
that is fast but considerably less capable than the deep saliency methods [6] used for the other
augmentation techniques. Consequently, SaliencyMix introduces minimal overhead; however,
its improvement on classification accuracy is limited.

Dataset Model Vanilla Mixup CutMix Manifold SaliencyMix Puzzle Mix Co-Mixup SAGE

CIFAR10 PreActResNet18 3.35 3.29 3.38 3.44 3.45 8.9 25.29 6.83
CIFAR100 ResNext29 9.76 9.67 9.83 10.27 10.18 22.64 35.65 19.5

Table 3: GPU hours comparison of SAGE and other baselines.
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Figure 2: Compared to other saliency-guided methods, SAGE achieves better standard test
accuracy on both datasets with low computation overhead.
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E Full SAGE Algorithm
Algorithm 1 shows the exact procedure of SAGE. We discuss saliency-guided mixing with
optimal rearrangement (Ln 3) in Sec. 3.2, and the rest of the algorithm is covered in Sec. 3.1.

Algorithm 1: Data Augmentation based on SMART Mixup
Input :Pairs of training samples: px0,y0q and px1,y1q, a classifier fθ p¨q, a loss

function ℓ, a randomly sampled mix ratio λ , a Gaussian smoothing
parameter σ2 and O is the space of all possible image translations

Output :A new data-label pair: px1,y1q

1 s0 “ |∇xℓp fθ px0q,y0q|l2,3 ,s1 “ |∇xℓp fθ px1q,y1q|l2,3
2 s̃0 “ λ ˚ Smoothingps0,σ

2q, s̃1 “ p1 ´ λ q ˚ Smoothingps1,σ
2q

3 τ˚ “ argmax
τPO

νpτq, where νpτq is defined in Eq. 4

4 Mτ˚
“

s̃0
s̃0`T ps̃1;τ˚q`ζ

5 γ “ 1
d2

řd
i, j“1 Mτ˚

i j

6 x1 “ Mτ˚
d x0 ` p1 ´ Mτ˚

q dT px1;τ˚q

7 y1 “ γ ¨ y0 ` p1 ´ γq ¨ y1

F Examples of Augmentation Results with SAGE w/o SM
and SAGE w/o OR

In Sec. 4.4, we verified the effectiveness of our data augmentation strategy by ablating i)
SAGE w/o OR (i.e., without optimal rearrangements) that always performs Saliency-guided
Mixup on non-shifted images and ii) SAGE w/o SM (i.e., without Saliency-guided Mixup).
Examples of the augmentation results are shown in Figure 3.

SAGE w/o OR SAGE w/o SM

Figure 3: Augmentation results with SAGE w/o OR and SAGE w/o SM

G Additional Ablations
We include two additional ablation studies in this section: i) reusing parameter gradients
from un-augmented samples (Sec. 3.4) and ii) randomly rescaling of total saliency. For each
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experiment, we use the best result as the control group (bold numbers), then we repeat the
runs with modified task-related parameters.

η CIFAR-10 CIFAR-100
0.5 96.65 79.36
0.7 96.95 79.91
1.0 96.58 79.24

u CIFAR-10 CIFAR-100
0.5 96.75 79.91
0.6 96.95 79.7
1.0 96.6 79.29

Table 4: Additional ablation studies of SAGE. (left) Test accuracy of models trained with
combined parameter gradients from un-augmented and SAGE-augmented samples. (right)
Test accuracy of models trained with truncated total saliency.

Reusing the parameter gradients: In Sec. 3.4, we discuss performing gradient descent
update by combining parameter gradients computed on un-augmented and SAGE-augmented
samples. In particular, let gs and ga represent the gradients computed using un-augmented and
augmented images, respectively. The final model update is based on g “ η ¨ gs ` p1 ´ ηq ¨ ga,
where η P r0,1s. In Table 4, we observe reusing the parameter gradients computed on
un-augmented samples (η ‰ 1) significantly increases accuracy on the test data.

Random rescaling of total saliency: A random mixing ratio in prior work [1, 3, 4, 8, 9]
can be seen as a way to increase diversity of the augmentation results. Similarly, we randomly
rescale the total saliency of smoothed s0 and s1 using λ „ Up0,1q and 1 ´ λ respective. In
practice, we observe the diversity in the augmented images greatly decreases when λ ą 0.6,
since x0 and s̃0 dominate when computing the total saliency. Therefore, when the offset
images are rescaled to having a small total saliency, it is often better to just exclude it in the
augmented results. As such, we propose a simple heuristic to truncate the random rescaling
factor: λ „ Up0,uq, where u P r0,1s. Results in Table 4 shows with u ă 1.0, the test accuracy
on both datasets increase significantly.
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