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Abstract

Source-Free Domain Adaptation (SFDA) aims to solve the domain adaptation prob-
lem by transferring the knowledge learned from a pre-trained source model to an unseen
target domain. Most existing methods assign pseudo-labels to the target data by generat-
ing feature prototypes. However, due to the discrepancy in the data distribution between
the source domain and the target domain and category imbalance in the target domain,
there are severe class biases in the generated feature prototypes and noisy pseudo-labels.
Besides, the data structure of the target domain is often ignored, which is crucial for clus-
tering. In this paper, a novel framework named PCSR is proposed to tackle SFDA via a
novel intra-class Polycentric Clustering and Structural Regularization strategy. Firstly,
an inter-class balanced sampling strategy is proposed to generate representative feature
prototypes for each class. Furthermore, k-means clustering is introduced to generate mul-
tiple clustering centers for each class in the target domain to obtain robust pseudo-labels.
Finally, to enhance the model’s generalization, structural regularization is introduced for
the target domain. Extensive experiments on three UDA benchmark datasets show that
our method performs better or similarly against the other state of the art methods, demon-
strating our approach’s superiority for visual domain adaptation problems.

1 Introduction
In recent years, unsupervised domain adaptation [9] has been developed to reduce the do-
main shift by transferring knowledge from a labeled source domain to a target domain, and
has achieved promising results in object detection [3, 35], semantic segmentation [39, 52]
and person re-identification [7, 42]. The main research directions of the existing UDA meth-
ods include (i) minimizing the distribution discrepancy by matching the statistical distribu-
tion moments [24, 30]; (ii) applying adversarial training to learn domain-invariant feature
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representations [45, 51]; and (iii) bridging the domain gap by using clustering [8] or pseudo-
labeling [1]. It is worth noting that all of them assume that both well-trained source models
and labeled source data are available. However, with the increasing concerns about data pri-
vacy and intellectual property of users, the accessibility of well-labeled source data cannot
be guaranteed for many real-world tasks.

To overcome the above problem, some recent works [14, 15, 18, 19, 33, 47] explored
domain adaptation without source data. Source-free domain adaptation (SFDA) is a new un-
supervised learning setup for the domain adaptation task. Recently, image generation [18],
class prototypes [19, 47], and pseudo labeling [19] are widely utilized in the existing SFDA
approaches. However, generative models require a large computational capacity for gener-
ating target-style images. Class prototypes and pseudo labeling methods have shown com-
petitive results but noisy labels are introduced due to category biases in the source and target
domains. We argue that only one clustering center for each category is insufficient to avoid
negative transfer caused by hard transfer data in the target domain. Furthermore, the struc-
tural information of the target data in the feature space is often ignored, which is very helpful
to reduce the noisy labels though.

Based on the ideas presented above, a simple yet effective structured clustering strategy
for polycentric clustering is proposed in this paper. Specifically, due to class imbalance in the
target domain, to avoid the easy data dominating the target model, an inter-class-balanced
sampling strategy is designed to aggregate representative samples of each class. To assign
more accurate pseudo-labels, polycentric clustering is proposed to generate multiple feature
clustering centers within a class of the target data. In addition, to alleviate the noisy labels, a
mixup structural regularization term is introduced into our framework, encouraging the inter-
polation samples to be consistent with the interpolation predictions. Under the guidance of
structural regularization, the model is enforced to maintain consistency, thus the robustness
against noisy labels is improved.

To evaluate the effectiveness of our model, we conduct extensive experiments on three
benchmark datasets, and the experimental results show significant superiority of our method
in SFDA. The main contributions of our work are summarized as follows:

• We propose a novel framework, Polycentric Clustering and Structure Regularization
(PCSR) for SFDA tasks, which aims to protect data privacy and maintain the model
performance without access to the source data.

• To avoid easy-transfer data dominating the target model, an inter-class-balanced sam-
pling strategy is designed to address the challenge of class imbalance. And a polycen-
tric clustering approach is proposed for each class to reduce the noisy labels for those
hard data.

• To reduce the noisy labels, the mixup regularization module is introduced to interpo-
late the target data for consistent training, leading to more robust pseudo labels.

• Extensive experiments on three benchmark datasets validate the superiority of our
PCSR strategy. The results show that our strategy is comparable to or significantly
outperform existing methods.
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2 Related Work

2.1 Unsupervised Domain Adaptation
As a classic example of transfer learning [28], in recent years, UDA methods for image
classification tasks have aimed to align the source and target distributions in an attempt to
minimize the domain gap in knowledge transfer. There are currently three main classes
of UDA methods: discrepancy-, adversarial learning-, and reconstruction-based. The fea-
ture distributions of the source and target domains are aligned by minimizing Maximum
Mean Discrepancy (MMD) [21, 22, 23] in the discrepancy-based methods. In the adversar-
ial learning-based approaches, the network is trained to learn domain invariant features by
adding a feature discriminator [10, 25, 34]. Different from the previous two methods, the
network is guided to extract domain-invariant features by an auxiliary image reconstruction
module in the reconstruction-based approaches [2, 27]. Although these UDA methods are
effective, they require access to both the source and target data. In the real world, this is
impractical due to data privacy or security concerns. In contrast, our method proposed in
this paper does not require source data when performing adaptation, making it more suitable
for real-world applications.

2.2 Unsupervised Source-Free Domain Adaptation
In most realistic scenarios, only source models and unlabeled target data are available. As a
result, some recent work on source-free domain adaptation has emerged [15, 18, 19, 20, 31,
38, 44, 49]. Specifically, SHOT [19] proposed freezing the source classifier to maximize mu-
tual information and minimize entropy, while using a pseudo-labeling strategy to obtain extra
supervision. In 3C-GAN [18], labeled target-style training images were generated based on a
conditional GAN to improve model performance on the target domain. In G-SFDA [49], the
neighborhood structure of the target data for clustering enhanced the predictive consistency
of local neighborhood features effectively. In CPGA [31], the source avatar prototypes were
generated via contrastive learning to mine the hidden knowledge in the source model. Many
methods described above freeze the source classifier during adaptation to preserve class in-
formation and assign pseudo-labels based on the classifier’s output. They mainly focus on
a single feature prototype to align two domains, which often causes negative transfer and
noisy labels. Instead, we here introduce polycentric clustering for each class to reduce noisy
labels. In addition, a consistent training strategy is introduced to enhance the target domain
for source-free domain adaptation.

3 Method
In this section, we first formally define the problem and the notation used for source-free
domain adaptation followed by an overview of our framework. Later, a detailed description
of our proposed strategy to solve the SFDA problem is presented.

3.1 Preliminaries and notations
We denote that the source domain with ns labeled samples as Ds = {xi

s,y
i
s}

ns
i=1, where xi

s ∈ Xs,
yi

s ∈ Ys ⊆ RK is the one-hot ground-truth label and K is the total number of classes of label
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Figure 1: Overall training pipeline of our proposed PCSR method.

set C = {1,2, ...,K}. Target domain dataset Dt has nt unlabeled samples {xi
t}

nt
i=1, where

xi
t ∈ Xt , it has the same label set C as that of Ds. Under the SFDA setting, only the model

fs trained on the source data is accessible, which consists of two parts: a feature extractor
gs : Xs → Rd and a classifier hs : Rd → RK , i.e., fs(x) = hs(gs(x)), where d denotes the
dimension of the feature space. In this work, with only the source model fs and unlabeled
data {xi

t}
nt
i=1 available, our goal is to learn an objective function ft : Xt → Yt and to infer

{yi
t}

nt
i=1.

3.2 Overall framework
An overview of our proposed framework is presented in Figure 1. The target model ft is
initialized by the source model fs, and the source model consists of two modules: the feature
encoding module gs and the classifier module hs. The target model uses the same classifier
module, namely, ht = hs, and two new modules named PCC and mixup are introduced re-
spectively. It is noted that our PCSR learn ft in an epoch-wise manner. As for each epoch
stage, firstly, a balanced set of feature instances representing each class is obtained using
inter-class balanced sampling. Then polycentric clustering is implemented to obtain accu-
rate pseudo-labeling. After that, information maximization loss is used to reduce the gap
between the feature distributions in the source and target domains. Meanwhile, the mixup
operation is introduced to enhance the target domain with more interpolated samples.

3.3 Information maximization
We update the feature extractor gt using the information maximization (IM) loss [12], which
reduces the feature distribution between the source and target domains so that the classi-
fication output of the target features has some certainty and global diversity. The IM loss
consists of a conditional entropy term and a diversity term:

Lim =−Ex∈Xt

K

∑
k=1

δk( ft(x)) logδk( ft(x))+
K

∑
k=1

p̄k log p̄k (1)

Where δk(a) denotes the k-th element in the softmax output of the K-dimensional vector a.
p̄ = Ex∈Xt [δk( ft(x))] is the average of the current batch’s softmax output.
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3.4 Intra-class polycentric clustering

To reduce the gap between the source and target domains, a simple existing solution is to
eliminate the noisy labels by selecting pseudo-labels with high confidence. However, this
will bias the model toward majority classes and ignore minority classes, resulting in noisy
labels for those hard data in the target domain. To reduce the noisy labels, an intra-class
polycentric clustering strategy is proposed, which contains two steps.

Inter-class balanced sampling. Due to class imbalance in the target domain, instead
of using the existing prediction results based on argmax operations, we adopt an inter-class
balanced sampling strategy to construct each class of the target domain. Specifically, for the
k-th class in the target domain, each sample in the target domain is represented by a feature
vector ĝt(xt) and a classification result p(xt) = δ ( f̂t(xt)). Instead of choosing the top-1
feature, the top-M p(xt) of the k-th class on the target domain Dt are selected as potential
representative features for aggregation. Then these top-M are averaged to form an inter-class
balanced feature clustering center ck, and the initial pseudo-label ŷt is obtained from the
nearest centroid classifier as follows:

Mk = argmax
x∈Xt

δk( f̂t(x))

c(0)k =
1
M ∑

i∈Mk

ĝt(xi)

ŷt = argmin
k

D f (ĝt(x),c
(0)
k )

(2)

Where f̂t = ĝt ◦ht denotes the previously learned target hypothesis, M = max(1,⌊ nt
r×K ⌋). r is

the hyperparameter of the top-M selection ratio and K is the number of classes in the target
domain. D f (a,b) measures the cosine distance between a and b. Based on the above strategy,
we can obtain balanced sampled feature instances for each class. Similar to SHOT [19], we
perform iterative computations to obtain more robust clustering centers ck and pseudo-labels
ŷt as follows:

Mk = argmax
x∈Xt

δk(ĝt(x) · c(0)k )

c(1)k =
1
M ∑

i∈Mk

ĝt(xi)

ŷt = argmin
k

D f (ĝt(x),c
(1)
k )

(3)

Although the pseudo-labels and the centroids can be updated by Eq. (3) multiple times, we
find that two rounds of updating are sufficient.

Polycentric clustering. According to the above strategy, class-balanced prototype and
robust pseudo-labels can be obtained. However, for those ambiguous data located nearby
the decision boundary, they may not be effectively represented by a coarse monocentric
prototype. In this paper, polycentric clustering is proposed to get more accurate pseudo-
labels with a predefined number of clustering centers. Specifically, the classical k-means
algorithm [26] is introduced to achieve intra-class clustering of the target domain, assuming
that the number of clustering centers is P and {ci

k}P
i=1 is defined as the multiple clustering

centers of the k-th class. The k-means algorithm is used to obtain multiple clustering centers
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of each class {ci
k}P

i=1 and obtain more robust pseudo-labels ŷt :

Mk = argmax
x∈Xt

max
1⩽i⩽P

(exp(ĝt(x) · ci
k))

∑
K
j=1 max

1⩽i⩽P
(exp(ĝt(x) · ci

j))

{ci
k}P

i=1 = Kmeans
m∈Mk

(ĝt(xm))

ŷt = argmax
k

max
1⩽i⩽P

(exp(ĝt(x) · ci
k))

∑
K
j=1 max

1⩽i⩽P
(exp(ĝt(x) · ci

j))

(4)

Empirically, we find that iterating this process for two rounds is sufficient. Given the gener-
ated pseudo-labeling, the loss function for computing the intra-class polycentric clustering
pseudo-labeling is as follows.

Lpcc =−Ex∈Xt

K

∑
k=1

1[ŷt=k] logδk( ft(x)) (5)

3.5 Structural regularization by mixup training

As mentioned above, we consider intra-class polycentric clustering to mitigate negative
transfer, but this ignores the target domain’s data structure and still suffers from the noisy la-
bels. According to [48], even though the target data is shifted in the feature space, the target
data of the same class is still expected to form a cluster in the embedding space. Therefore,
we consider paired target structure information by MixUp [50] to reduce the intra-domain
variation, and the new instance {x,y} generated by the MixUp operation Mix((X1,Y1),(X2,Y2))
can be defined as:

x = λx1 +(1−λ )x2; x1 ∈ X1, x2 ∈ X2

y = λy1 +(1−λ )y2; y1 ∈ Y1, y2 ∈ Y2
(6)

λ denotes the mixup coefficient. The structured loss is obtimized by using interpolation
consistency training [41]:

Lmix = Exi,x j∈Xt lce((λ f
′
t (xi)+(1−λ ) f

′
t (x j)), ft(λxi)+(1−λ )x j) (7)

Where λ obeys Beta distribution sampling, λ ∈ Beta(α,α), and the hyperparameter is em-
pirically set to 0.3, following the setup of [50]. lce represents the cross-entropy loss. f

′
t

indicates that no gradient calculation is required, but only the value of ft is provided. This
loss function can supply more augmented samples for the target domain, allowing for better
generalization ability.

Integrating all the loss function equations introduced, we can derive the final loss function
as follows.

Lt = Lim +Lpcc +βLmix (8)

Where β is a hyperparameter experimentally set to 1.0.
Algorithm 1 summarizes our method’s training process.
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Algorithm 1 Polycentric Clustering and Structural Regularization for SFDA
Input: Pre-trained source model fs(hs,gs); target data Xt ; max epoch number Tmax; Number

of clustering centers P.
Initialization: Initialize ft(ht ,gt) using fs(hs,gs).

1: for epoch_idx = 1 to Tmax do
2: Obtain feature prototypes and initial pseudo-labels using inter-class balanced sam-

pling using Eq. (2) Eq.(3).
3: Compute multiple clustering centers and pseudo-labels based on P and k-means al-

gorithm using Eq.(4).
4: for iter_idx = 1 to the number of target samples Nb do
5: Calculate IM loss according to the Eq.(1).
6: Apply MixUp to performing structural regularization operations by Eq.(7).
7: end for
8: Update ft via minimizing Eq.(8).
9: end for

4 Experiment and Analysis

4.1 Experimental setup
DataSets. We conduct experiments on three datasets, including Office-31 [32], Office-
Home [40], and VisDA-C [29]. Office-31 is divided into three domains: Amazon(A), We-
bcam(W), and DSLR(D), with 31 categories. Office-Home contains 65 categories and con-
sists of four domains: Artistic images(A), Clip Art(C), Product images(P), and Real-World
images(R). VisDA-C is a more challenging dataset, with 152K synthetic images generated
by rendering 3D models in the source domain while the target domain has 55K real object
images, which are divided into 12 shared classes.

Implementation details. To ensure a fair comparison with the related approaches, we
employ ResNet-50 [11] pre-trained on Image-Net [6] as the backbone for Office-31 and
Office-Home, and ResNet-101 [11] as the backbone for VisDA-C. Similar to the previous
work, for all datasets, we apply the gradient descent (SGD) optimizer with momentum 0.9
and weight decay 1e-3, the batch size is set to 64, and the input image size is reshaped
to 224×224. The learning rate is set to 1e-2 for Office-31 and Office-Home, and 1e-3 for
VisDA-C, and 30 epochs are trained for all the settings. For the hyperparameter settings, we
set the hyperparameter r of the selection ratio to 3 on all datasets, and the predefined number
of clustering centers P is set to 3 for Office-31 and Office-Home, and 4 for VisDA-C. All
experiments are built on a TITAN Xp with Pytorch-3.8. The source code of the proposed
algorithm is available in https://github.com/Gxinuu/PCSR.

4.2 Quantitative comparison
Tables 1-3 show the experimental results on the three datasets mentioned above. The best
results in SFDA shown in bolded font and the sub-optimal results underlined. In Table 1,
our method achieves comparable results to 3C-GAN on Office-31 and even obtains more
competitive performance. Note that 3C-GAN highly relies on the extra synthesized data.
And Office-31 is a small-scale dataset whose image number of each class is around 40 on
average. Therefore, it is hard for our method to aggregate valid polycentric clustering. Yet
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Method SF A→D A→W D→A D→W W→A W→D Avg.
CDAN(2018b)[25] ✗ 92.9 94.1 71.0 98.6 69.3 100.0 87.7
SAFN(2019)[46] ✗ 88.8 98.4 69.8 99.8 69.7 87.7 85.7
MCC(2020)[13] ✗ 95.6 95.4 72.6 98.6 73.9 100.0 89.4
BNM(2020)[4] ✗ 90.3 91.5 70.9 98.5 71.6 100.0 87.1
SRDC(2020)[36] ✗ 95.8 95.7 76.7 99.2 77.1 100.0 90.8
DMRL(2020)[43] ✗ 93.4 90.8 73.0 99.0 71.2 100.0 87.9
RWOT(2020)[45] ✗ 94.5 95.1 77.5 99.5 77.9 100.0 90.8
LAMDA(2021)[16] ✗ 96.0 95.2 87.3 98.5 84.4 100.0 93.6
Source-only ✓ 80.7 77.0 60.8 95.1 62.3 98.2 79.0
SFDA(2021)[14] ✓ 92.2 91.1 71.0 98.2 71.2 99.5 87.2
SHOT(2020a)[19] ✓ 94.0 90.1 74.7 98.4 74.3 99.9 88.6
BAIT(2020)[47] ✓ 92.0 94.6 74.6 98.1 75.2 100.0 89.1
3C-GAN(2020)[18] ✓ 92.7 93.7 75.3 98.5 77.8 99.8 89.6
NRC(2021a)[48] ✓ 96.0 90.8 75.3 99.0 75.0 100.0 89.4
BNM-S(2021)[5] ✓ 93.0 92.9 75.4 98.2 75.0 99.9 89.1
ours ✓ 93.6 93.8 76.0 99.0 74.5 100.0 89.5

Table 1: Classification accuracies (%) on Office-31 for ResNet50-based methods.

Method SF Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.
ResNet-50(2016)[11] ✗ 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
CDAN(2018b)[25] ✗ 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BNM(2020)[4] ✗ 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
SAFN(2019)[46] ✗ 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
SRDC(2020)[36] ✗ 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3
LAMDA(2021)[16] ✗ 57.2 78.4 82.6 66.1 80.2 81.2 65.6 55.1 82.8 71.6 59.2 83.9 72.0
Source-only ✓ 44.0 67.0 73.5 50.7 60.3 63.6 52.6 40.4 73.5 65.7 46.2 78.2 59.6
SFDA(2021)[14] ✓ 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7
SHOT(2020a)[19] ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
BAIT(2020)[47] ✓ 57.4 77.5 82.4 68.0 77.2 75.1 67.1 55.5 81.9 73.9 59.5 84.2 71.6
G-SFDA(2021b)[49] ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
NRC(2021a)[48] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.7 85.6 72.2
BNM-S(2021)[5] ✓ 57.4 77.8 81.7 67.8 77.6 79.3 67.6 55.7 82.2 73.5 59.5 84.7 72.1
ours ✓ 58.1 78.5 82.1 67.9 79.1 78.8 69.0 57.9 82.3 75.2 60.0 84.7 72.8

Table 2: Classification accuracies (%) on Office-Home for ResNet50-based methods.

we still achieve the best results on 3 of 6 tasks.
As shown in Table 2, our method achieves the latest performance (72.8%) and is higher

than the second best NRC by a margin of 0.6% on Office-Home, achieving the best/second-
best results on 10 out of 12 individual tasks. Our method is even superior to some of the
traditional domain adaptation methods which require source data. This can be attributed to
the fact that due to the increased amount of data, more finely polycentric clustering and more
comprehensive structure information is available to support our approach.

To further demonstrate the effectiveness of our proposed PCSR, we conduct evaluation
experiments on the large dataset VisDA-C and illustrate the results in Table 3. Our method
significantly outperforms SHOT, surpassing it by 2.7%. We can find that class-balanced per-
formance has been improved with our strategy. Especially for the challenging class ‘truck’,
our method achieves 66.4%, which outperforms SHOT applied monocentric clustering by
23.7%. The reason is that the polycentric clustering strategy introduces more fine-grained
feature clustering centers and the generalization ability of the target model is improved by
structural regularization. The results demonstrate the effectiveness of our approach, and our
method also outperforms domain adaptation methods with access to source data on both
Office-Home and VisDA-C.

4.3 Ablation studies

Number of clustering centers P. In Figure 3, we show the results using different P∈{1,2,3,4,
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Method SF plane bicycle bus car horse knife motor person plant sktbrd train truck Per-class
ResNet-101(2016)[11] ✗ 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CDAN(2018)[25] ✗ 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SAFN(2019)[46] ✗ 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD(2019)[17] ✗ 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
MCC(2020)[13] ✗ 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
RWOT(2020)[45] ✗ 95.1 80.3 83.7 90.0 92.4 68.0 92.5 82.2 87.9 78.4 90.4 68.2 84.1
Source-only ✓ 64.1 24.9 53.0 66.5 67.9 9.1 84.5 21.1 62.8 29.8 83.5 9.3 48.0
SFDA(2021)[14] ✓ 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
SHOT(2020a)[19] ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
3C-GAN(2020)[18] ✓ 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
G-SFDA(2021b)[49] ✓ 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.5
HCL(2021a)[37] ✓ 93.3 85.4 80.7 68.5 91.0 88.1 86.0 78.6 86.6 88.8 80.0 74.7 83.5
ours ✓ 96.2 89.8 82.5 61.0 95.3 96.4 87.5 81.8 91.7 92.3 86.2 66.4 85.6

Table 3: Classification accuracies (%) on VisDA-C for ResNet101-based methods.

5,6} on three datasets. When P is set to 1, it is a generalized single-centroid clustering strat-
egy. It can be discovered that when P is set to 3, accuracy can go up to the best result on
Office-31 and Office-Home, whereas the best result for VisDA-C is obtained when P is set
to 4. The data size of VisDA-C is larger than Office-31 and Office-Home, and the adaptation
is performed from the synthetic images to the real images on VisDA-C, there is a great dis-
crepancy in the feature distribution between them. Therefore, more clustering centers should
be set to achieve better performance. It can be seen that the polycentric clustering strategy
introduce more fine-grained feature clustering centers for each class, which allows the model
to assign more accurate pseudo-labels for those hard transfer data. This demonstrates that it
is necessary to implement intra-class polycentric clustering.

Ablation study of hyper-parameter β . In Eq.(8), β is an empirical hyper-parameter,
and we conduct an ablation experiment which is shown in Fig. 2. Some different β in [0,5,
1.5] are set for the experiment, and it can be seen that the value of β is insensitive to any
change, so we select β = 1 in the paper.

Figure 2: The ablation study of β

Lim Lpcc Lmix Avg.
59.6

✓ 70.5
✓ ✓ 72.1
✓ ✓ 72.5
✓ ✓ ✓ 72.8

Table 4: Ablation of the losses on Office-
Home.

Ablation study on losses. We validate the effectiveness of our methods on Office-Home.
Results are shown in Table 4. The classification accuracy is 59.6% when the source-only
model is used. We start with applying the information maximization loss, where makes the
classification output of the target features becomes more certainty and more global diversity.
This achieves 70.5% accuracy. In the third row, based on the information maximization loss,
with the intra-class polycentric feature clustering, more accurate pseudo labels are obtained,
and the performance increases by 12.5% to 72.1%. And using structural regularization,
the model is enforced to maintain consistency, and the performance achieves 72.5%. The
model’s performance is optimized when all three are used simultaneously. This demonstrates
the validity of each loss function.

t-SNE visualization. To visually the effectiveness of our method, we compare the t-

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Long, Cao, Wang, and Jordan} 2018{}

Citation
Citation
{Xu, Li, Yang, and Lin} 2019

Citation
Citation
{Lee, Batra, Baig, and Ulbricht} 2019

Citation
Citation
{Jin, Wang, Long, and Wang} 2020

Citation
Citation
{Xu, Liu, Wang, Chen, and Wang} 2020

Citation
Citation
{Kim, Cho, Han, Panda, and Hong} 2021

Citation
Citation
{Liang, Hu, and Feng} 2020

Citation
Citation
{Li, Jiao, Cao, Wong, and Wu} 2020

Citation
Citation
{Yang, Wang, vanprotect unhbox voidb@x protect penalty @M  {}de Weijer, Herranz, and Jui} 2021{}

Citation
Citation
{Tang, Yang, Ma, Hendrich, Zeng, Ge, Zhang, and Zhang} 2021



10 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

(a) (b) (c)

Figure 3: (a), (b) and (c) presents the accuracy on Office-31, Office-Home and VisDA-C
when P takes different values, respectively.

(a) (b) (c)

Figure 4: The t-SNE feature visualizations for task Ar→Cl on Office-Home. (a), (b) and (c)
presents alignment between the source data and the target data by source-only model, SHOT
and our PCSR method, respectively. Red/blue denote the source/target domains.

SNEs embedding the features extracted by ResNet-50, SHOT and our method on Ar→Cl
in Office-Home. As shown in Figure 4, where the source and target domain features are
expected to cluster independently. We observe that the features in the target domain become
more structured after adaptation, and the source and target domains are better aligned via
our method. This result clearly demonstrates that it is possible to reduce the discrepancy
between two different domains even without accessing source data.

5 Conclusion

In this paper, we have proposed a polycentric clustering and structure regularization (PCSR)
strategy for source-free domain adaptation. Specifically different from the previous mono-
centric clustering, our PCSR strategy reduced the negative transfer of hard data in the target
domain by considering intra-class polycentric clustering through inter-class-balanced sam-
pling. In addition, structural regularization of the target domain interpolates the target data
for consistent training, and improves the model’s robustness. The experimental results on
three benchmark datasets have demonstrated the effectiveness of our approach. For future
work, we intend to apply the method to other vision tasks, such as semantic segmentation
and target detection.
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