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Abstract
The Generative Adversarial Network (GAN) and its variations have enabled high-

quality image generation. However, generating reasonable persons in complex scenes
(such as MS-COCO images) remains challenging. We propose a novel structure-based
and context-aware approach to enhance the person synthesis in complex scenes. The
method can successfully predict the person pose and face structures while respecting the
weak layout-based context, then leverage the structures to refine the person appearance.
Our method involves three parts. First, a memory-based model is used to encode person
intrinsic structures including pose and face keypoints. Second, a context-aware model in-
fers the conditional person structures from the layout context. Third, the structure-guided
person appearance refiners further enhance the final image generation. Our experiments
present convincing person generation results in layout-to-image tasks on a challenging
dataset. Person-related evaluations demonstrate our method achieves state-of-the-art per-
formance, especially on person accuracy and face detection metrics.

1 Introduction
The advent of Generative Adversarial Nets (GANs) [9] largely facilitates high-quality im-
age generation. In terms of person-related generation, recent models have been successfully
applied to various applications including photo-realistic face generation [4, 19], person pose
transfer [28, 38, 44], and virtual clothes try-on [7, 20], etc. However, existing works are
always task-oriented using hand-crafted datasets that contain clean and aligned persons [25]
or faces [19, 24]. Besides, heavy annotations are frequently used for guiding person syn-
thesis, e.g., using the segmentation masks or UV maps of human parts for person genera-
tion [10, 33]. Despite the realistic results, these settings significantly constrain the person
generation in the wild and hinder further applications in real life.

In this paper, we focus on person-in-scene synthesis, a task for generating persons in
natural scenes with complicated context but weak conditions. It is more challenging be-
cause there are various objects in the context and the person pose and appearance are also
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Figure 1: Illustration of our approach improving the person generation by three steps: intrin-
sic structure modeling, contextual structure prediction, and appearance refinement. Existing
methods like [36] fail to generate plausible persons in complex scenes because they lack
prior knowledge of person structures that are important to guide quality person generation.

diverse. The existing layout-to-image (L2I) generation approach using only bounding boxes
as input conditions has witnessed the challenges in generating reasonable persons on COCO
dataset [3, 23]. Figure 1-Right shows an image synthesis example from the state-of-the-art
(LostGAN-v2 [36]), where the generated persons are difficult to recognize due to the lack of
clear limbs and face features. Therefore, generating quality persons with reasonable poses
and faces in complex scenes remains a largely unsolved problem.

The difficulty of the present problem has also been pointed out previously. Bau et al. [2]
found that GANs tend to ignore persons though persons are frequent in the datasets. Sun
et al. [36] discussed the limitations of existing L2I tasks that generating satisfactory per-
sons are more difficult, with the argument that persons are more articulated compared with
other common objects. We speculate there are two main challenges that hinder existing
methods [1, 35, 36] to generate better persons in complex scenes. First, the lack of person
structure knowledge. Persons are internally structure-based, despite the size and appearance
variety. The structures, such as pose and face keypoints, can indicate the shape, action, and
facial expression for persons. We call them intrinsic structures, which exist as innate charac-
teristics of persons, independent of the complex scenes. However, existing methods ignore
such prior knowledge of persons. Second, person structures are diverse and contextual. The
diversity of persons is much higher in the wild. Person poses and appearances change de-
pending on different environments. However, existing approaches directly generate persons
along with other objects. They ignore the spatial relationship between persons and the layout
context. Mixing persons with other texture-based classes, such as snowfields and trees, can
easily lead to distorted synthesized results.

In this work, we provide novel solutions to alleviate the above problems. We target
at the layout-to-image generation task where the scene layout is given as input. First, we
propose the person intrinsic structure model. It encodes the person pose and face keypoints
as structures in a memory-based network, providing sufficient prior knowledge that aids
the further synthesis. Also, the person structures are independently learned, thus avoiding
distortions that are usually caused by convolution-based generation. Second, we design a
unique person-centered graph neural network to capture the contextual person features from
the layout and infer the structure from this context. Third, with the predicted person structure,
we use two person appearance refiners to generate a spatial intermediate semantic map from
the person structure keypoints. The semantic feature map captures richer person structure
and appearance features for person generation. Figure 1 shows the method pipeline.

We carry out experiments on the challenging COCO dataset [3]. The results demonstrate
that our method achieves state-of-the-art performance on multiple person-specific metrics
including person classification accuracy, person FID, face detection precision and recall. As
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shown in Figure 1, our method is able to infer the person pose and face keypoints from the
context and synthesize reasonable persons.

2 Related Work
Image Generation from Layouts. The layouts comprising bounding boxes of objects are
first used as an intermediate step for the text-to-image generation task [15, 21]. Zhao et
al. [42] firstly proposed the layout-to-image task for generating images from layouts con-
taining bounding boxes and their corresponding object classes. The simple yet flexible and
rich form of layouts attracts more following works. Sun et al. [35, 36] proposed LostGANs
that adopt ISLA-Norm layers for better and higher resolution image generation. Other works
focused on improving the image quality through generating better masks [22] or learning
context-aware object representation [13], etc. The layout-to-image generation also acts as
a sub-process in image generation from scene graphs [1]. However, all the aforementioned
methods do not consider the complexity of the person class but only treat person as a common
object. The only exception is [40], which provides keypoints for each person and constructs
a compositional space for a better person-in-context generation. It requires person keypoints
as input for both training and inference, making it less flexible.

Human Pose Transfer. Human pose transfer aims to generate a human image with the
target pose from a source image and a source pose. It is related because of the use of pose
information to guide the transformation. Ma et al. [27] firstly introduced this challenging
task and adopted a coarse-to-fine method by directly concatenating source image, source
pose, and target pose to model the output image. Others used a two-branch-based framework
to separately deal with pose and image to alleviate misalignment. Zhu et al. [44] proposed
a local attention mechanism to progressively transfer information from source pose to target
pose. Tang et al. [38] introduced co-attention blocks to model the shape and appearance
of persons. These methods use sparse keypoints as the pose representation to guide the
transformation, but it is hard to build the correspondence between pose and image using the
sparse representation. Following research [6, 10, 28] proposed to first generate a person
parsing segmentation map and then render the image. A recent work [8] proposed a new
application that generates a person in an image with other persons by predicting natural pose
and semantic map of the generated person. However, it requires intensive inputs such as
accurate body parts, face, and appearance parsing maps.

3 Method

3.1 Method Design
Our main idea is to design a structure-based generation approach to avoid generating dis-
torted person, such that during inference, the extra person structure information can be
inferred from the context and then used to guide better person generation. In the layout-
to-image scenario, an intuitive way is to use a conditional generative model (like GAN) to
predict the person structure from the layout. However, we argue this is not a fully condi-
tional problem because of the particularity of persons for two concerns: first, although the
context can affect the persons behavior to some extent, persons are actually free to have any
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Figure 2: Method overview. (A) Learning the intrinsic structures including pose and face
keypoints into a memory-based VAE. (B) Predicting the person pose from the memory con-
ditioned on the layout graph, followed by the face keypoints prediction. (C) Two person
refiners PRM and FRM for generating intermediate semantic maps. (D) The person seman-
tic map fused with other object feature maps for final image generation.

pose/face structure as long as they follow some pattern, which we term as intrinsic structure.
Second, we expect a model to infer reasonable person structures under weak or complicated
layout contexts. With these considerations, we thus hope to model the person structure to
fulfill its intrinsic as well as contextual requirements: person structures are naturally owned
and have diversity in different contexts.

Figure 1 shows the illustration of the three-step pipeline, which reflects our design ideas.
(1) Intrinsic Structure Modeling. Encoding person pose and face keypoints into a memory-
based model is essential to maintain the structure distributions. (2) Contextual Structure
Prediction. The layout context is used as hints to infer what person pose or face keypoints
would be. We propose a layout-graph-based model to predict the possible pose/face pairs
from the pre-learned structure memory. (3) Appearance Refinement. We convert person
structures to pixel space to refine person generation. The idea is to learn an intermediate
semantic map for each person and fuse it with other non-person objects. Figure 2 shows the
procedure in detail.

3.2 Intrinsic Structure Model

The person structures consist of pose and face keypoints. We propose to use a memory-
based design to maintain person intrinsic structures. Concretely, we introduce the person
intrinsic structure model (ISM) by using two auto-encoders with a memory bank to save
the most representative pose and face keypoints, respectively. As shown in Figure 2-A, we
learn an auto-encoder consisting of an encoder E, a decoder D, and a structure memory
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bank M to represent person structures with the structure memory bank. The memory bank
is of size NM ×Ne , where NM is the number of stored features and Ne is the dimension of
memory vectors. With the encoding fe = E(k) ∈ RNe given the structure keypoints k, fe is
then mapped onto its closest latent code mi in the memory:

fe = mi, i = argmin
l

∥ fe −ml∥2
2 , (1)

where l ∈ {0,1, ...,NM}. This is also called vector quantization [29, 30]. Then the recon-
structed structure is obtained through the decoding k̂ = D( fe). In training the learning ob-
jective is to minimize the loss:

Lstructure =
∥∥k̂− k

∥∥2
2 + ∥sg[ fe]−m∥2

2 +∥sg [m]− fe∥2
2 . (2)

where
∥∥k̂− k

∥∥2
2 is the reconstruction loss Lrec and the rest is the latent loss Llatent . sg[·] is the

stop-gradient operation because Eqn. 1 is not differentiable in backpropagation, so a gradient
estimation way is used to copy the gradients from the decoder to the encoder.

3.3 Contextual Structure Predictor
We propose the Contextual Structure Predictor (CSP), a person-centered graph neural net-
work (Gg) to infer the most reasonable person pose from the memory while respecting the
layout context. Given the predicted pose, we then use a face structure predictor (F) to infer
the face structure, as shown in Figure 2-C.

Graph Representation. The layout implies a layout graph, in which the objects are rep-
resented by the nodes and their relationships are defined on the edges. We first define the
relationship categories R. Given a layout L with No objects O, the nodes in the layout graph
are represented by O= {(oi)

No
i=1} and edges are represented by triples T in the form (oi,r,o j),

where oi ∈ O, o j ∈ O and r ∈R. Specifically, R includes seven relationship categories: left
of, right of, above, below, inside, surrounding and in image. The representation for ob-
ject node oi is concatenated object category embedding oc

i , object location feature oloc
i and

size feature osize
i . Different from scene graph [18], layout graph is parsed from the coarse

bounding boxes instead of precise segmentation masks of the objects.

Model architecture. In each CSP layer, there are three linear modules gs,go,gr to sepa-
rately encode the subjective nodes, the objective nodes, and the relationships. For each edge
(oi,r,o j) in T , we have f ′r = gr( fi, fr, f j), where fi and f j are inputs for objects and fr for
relationship. As an object can either be subjective or objective, the graph output for each ob-
ject needs collect features from both directions, so f ′i = p({gs( fi, f s

r , fm)}∪{go( fn, f o
r , fi)}),

where fm, fn and f s
r , f o

r are objects and relationships when fi are subjective and objective,
respectively. (oi,rs,om) ∈ T , (on,ro,oi) ∈ T . p is an average function to map the collected
values to a single vector. The proposed CSP has two unique features: (1) The graph in-
puts are based on coarse bounding boxes. (2) The model is person-centered, i.e., only person
endpoints exist in the last layer despite information flows to each node in intermediate layers.

Contextual Structure Prediction. We use CSP to predict the pose representation from the
pretrained memory bank (Section 3.2). Then followed by the pretrained ISM pose decoder,
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a pose structure can then be recovered. We further introduce a linear-based pose encoder
F to predict the face structure in a similar way since we speculate face structure is more
relevant to the pose. We use Cross-Entropy loss (Lpose

CE and L f ace
CE ) as querying error from the

pose/face memory banks.

3.4 Person Appearance Refiners and Image Generation
We follow a common layout-to-mask-to-image procedure [1, 35, 36] for final image genera-
tion. As shown in Figure 2-D, a shared mask regressor first generates the masks for individual
non-person objects, then place them to their layout positions specified by the bounding boxes
to create a segmentation mask, or a semantic map ∈ RC×H×W , where C is the channel. The
semantic map is then used for generating the whole image. To fuse person structures into
the semantic map, we design two structure-guided appearance refiners, i.e., Pose Refinement
Module (PRM) and Face Refinement Module (FRM).

Pose and Face Refinement Modules. In this step, we first convert the coordinate-based
structure keypoints to their spatial keypoints heatmaps, denoted as Smap

p ∈ RNp×hp×wp for
pose and Smap

f ∈ RN f ×h f ×w f for face. The channels are Np and N f , which are the number
of keypoints coordinates for pose and face, respectively. hp/h f and wp/w f denote the spatial
height and width. Specifically, each channel of the heatmap encodes a point in the spatial
position defined by its coordinate. Next, we use the convolutional-based refiners to generate
their semantic maps. For the pose, formulated by Sp,SM

p =PRM(Smap
p ,zp), zp is the Gaussian

noise, Sp ∈ RC×hp×wp and SM
p ∈ R1×hp×wp are learnt person pose semantic map and mask.

Then final result is obtained by Sp = Sp
⊗

SM
p , where

⊗
denotes element-wise multiplication.

Similarly, face semantic map S f = FRM(Smap
f ,z f ) ∈ RC×h f ×w f , where z f is the Gaussian

noise. Note the output semantic share the same channel dimension C. In practice, the PRM
and FRM model are based on fully convolutional network [26] with skip connections [31].

Final Image Generation. Given image-level Gaussian noise zimg and the semantic map,
we use a generator G to generate the final image. Specifically, G is constructed by ResNet
blocks (ResBlock) [11] that adopts the self-modulation methods [5]. The objectives in image
generation training include: (1) Adversarial Loss. We use the hinge loss [39] for image-level
and object-level penalty, where the object features are extracted using ROI Align [12]. (2) L1
and Perceptual Loss [17]. We use L1 loss and VGG19 [34] as perceptual loss for pixel-level
and feature-level matching, respectively. (3) Total Variation (TV) Loss. This loss is used to
suppress high-frequency and isolated parts in mask generation. (4) Face Loss. We take face
as an object class and calculate its object-level GAN loss. Detailed model structures and
losses explanation can be found in the supplementary.

4 Experiments and Results

4.1 Experiments Setup
Datasets. We conduct experiments at two different resolutions 128×128 and 256×256 on
COCO-Stuff dataset [3]. We exploit the pose keypoints from COCO [23] and face keypoints
from COCO WholeBody [16]. As we focus more on person (in the context) generation, and
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Methods IS↑ FID↓ DS↑ PFID↓ PAcc(%)↑ FaceAP↑ FaceAR↑

128x128

Real images 14.40±0.89 - - - 84.36 0.621 0.580

Grid2Im (GT Layout) [1] 6.75±0.18 77.26 0.42 45.12 61.82 0.044 0.047

LostGAN-v2 [36] 8.24±0.47 47.73 0.53 28.09 73.26 0.146 0.168

Ours (Pred. KP) 8.06±0.36 44.73 0.52 24.29 84.91 0.351 0.315
Ours (GT KP) 8.47±0.35 43.98 0.51 21.73 80.34 0.511 0.491

256x256

Real images 20.82±1.13 - - - 84.77 0.771 0.905

Grid2Im (GT Layout) [1] 8.01±0.23 100.47 0.56 62.32 60.83 0.174 0.212

LostGAN-v2 [36] 10.78±0.36 53.67 0.62 34.24 76.02 0.312 0.373

Ours (Pred. KP) 10.16±0.33 53.21 0.62 29.42 87.5 0.638 0.581
Ours (GT KP) 10.76±0.58 51.57 0.62 26.99 81.41 0.733 0.734

Table 1: The comparison results with the state-of-the-arts on multiple metrics using ground
truth person pose and face keypoints (GT KP) and predicted person pose and face keypoints
(Pred. KP). ↑ (↓) means the higher (lower) value is better.

need person keypoints for training our model, we construct a new subset of COCO called
COCO-Person by following the similar dataset preparation as in [18, 35]. The new dataset
includes images containing up to 12 objects that have a minimum size ratio of 0.02 and at
least one person with pose keypoint annotation. The same preparation is used to build the
testing set. Finally, the training set and testing set contain around 51k and 2.1k images,
respectively. For fair comparisons, we retrain the baselines Grid2Im [1] and LostGAN-
v2 [36] using their official implementation with their default settings until convergence.

Evaluation Metrics. Commonly used metrics include Inception Score (IS) [32], Fréchet
Inception Distance (FID) [14] and Diversity Score (DS) [41] for evaluating image-level gen-
eration performance in terms of image quality, distribution, and the diversity degree, respec-
tively. In addition, we design person-specific evaluation metrics for pose and face evaluation.
The Person FID (PFID), derived from [37] focuses on the crops of generated persons, and
measures the object-level statistical distributions between generated and real persons. Per-
son Accuracy (PAcc) uses a pre-trained 101-layer ResNet classifier for person classification
measurement. We then use pre-trained face detector TinaFace [43] to report the face detec-
tion Average Accuracy (FaceAP) and Average Recall (FaceAR) over 10 Intersection over
Union (IOU) thresholds evenly ranging in [0.5, 0.7]. The ground truth face bounding box is
given by [16], as a person bounding box does not indicate where the face will be generated.
We lower the IOU thresholds to [0.1, 0.3] for a fair comparison. For methods predicting face
positions, the predicted face bounding boxes are used as ground truth.

4.2 Results

Image-level Synthesis Quality. Table 1 summarizes the quantitative comparisons between
our method and the state-of-the-arts Grid2Im [1] and LostGAN-v2 [36]. For 128 × 128
resolution, our model using ground truth person keypoints achieves the best performance in
image-level metrics Inception Score (IS) and FID. For 256 × 256 resolution, we also have
the best FID and competitive IS. Our model using predicted keypoints also performs better
than [36] on both resolutions. We also achieve competitive diversity scores.
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User Study Better Person Better Face Pred. KP Matching

LostGANv2 [36] 25.42% 9.78% -
Ours (Pred. KP) 74.58% 90.22% 76.4%

Table 2: Summary of the user studies

Person Synthesis Quality. Table 1 also reflect the person generation quality. Our method
achieves better person classification accuracy and FID. Interestingly, our model using pre-
dicted person keypoints leads to the best person accuracy which is even higher than real
images (84.91 against 84.36 and 87.5 against 84.77 on 128 × 128 and 256 × 256 resolution,
respectively). We speculate the reason is that the learned person structures in the memory
provide the most representative person pose and face priors, which make the generated per-
sons easier to be recognized. Our method using ground truth or predicted keypoints also
achieves very high face detection performance in Average Recall and Average Precision.

Qualitatively, Figure 3 presents our generation results. Our method can generate persons
with reasonable pose structures, appearances, and faces, while the existing methods [1, 36]
failed to generate recognizable persons. The synthesised persons have clear body shapes
(e.g., columns A and B) and face details (e.g., columns E and F). This shows that person
keypoints are important for guiding person generation in complex scenes and the proposed
person appearance refiners can successfully convert the person structural keypoints to se-
mantic parts, such as body, limbs, and faces, to improve person generation.

Context-Aware Person Keypoints Prediction. Given the layouts, our method can infer
person keypoints complying with the pre-encoded structures in the Intrinsic Structure Model.
As shown in Figure 3, the inferred pose keypoints can successfully cope with the context
and even other persons. For example, the predicted person poses in the snowfield context
in layout (A) are skiing poses. Layout (C) mainly includes a motorcycle surrounded by two
persons, and the inferred results are riding poses. Layout (F) indicates two persons with
pizzas and our method can infer two half-body poses near the table. Also, the predicted
face keypoints are compatible with the predicted poses. For example, all face keypoints
respect the poses, especially in columns (B), (C), and (D) where the face-facing directions
are the same as the various facing directions of poses. Furthermore, when there are not
many hints from the context, the inferred person poses can also be reasonable and even
contain interactions in-between, as shown in columns (B) and (D). However, there still exist
limitations when the person bounding box is too challenging. For example, the bottom-left
corner of (D) has a small person box but our method tries to infer a full pose. We provide
more results and analysis in the supplementary.

User Study. We conducted two user studies to evaluate the human preferences between our
results and those generated by state-of-the-art LostGAN-v2 [36]. The first one focuses on
the generated person and face quality. The second one evaluates whether the inferred person
pose and face keypoints are compatible with the corresponding layouts. We showed 2k ran-
domly sampled testing images (or inferred layouts) evenly to 10 users. Table 2 demonstrates
that our method achieves much higher person and face generation ratings. Also, 76.4% of
the predicted pose and face keypoints are considered reasonable and compatible with the
layouts. We provide more details in the supplementary.
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Groud Truth

Layout
and

ground truth
keypoints

Ours inferred
pose keypoints

Ours inferred 
face keypoints

Ours

Grid2Im

LostGAN-v2

(A) (B)(B) (C) (D) (E) (F)

Figure 3: Comparison with existing methods. The proposed approach infers the pose and
face keypoints given the layout context, and can generate persons with clear pose structure
and recognizable face features. The inferred face keypoints are magnified for a better view.

4.3 Ablation Study
This part evaluates the effectiveness of the proposed three modules and the losses of our
approach. The ablation studies are conducted on COCO-Person using 128 × 128 image
resolution. Table 3 summarizes comprehensive results using image-level and person-specific
metrics. The base approach is a vanilla ResBlock based generator, and the upper part shows
the ablation study on Person Appearance Refiners with default ISM and CSP. The lower part
shows the effectiveness evaluation of ISM and CSP under the same refiners and loss settings.

Effectiveness of Intrinsic Structure Model. The memory design in the Intrinsic Struc-
ture Model is important to maintain person structures. To validate this, we compare with
two models: (a) VanillaAE: an MLP based Auto Encoder with the same model architecture
but without memory design. (b) VanillaGAN: we directly fed the output features from the
Contextual Structure Predictor to a generator, training in an end-to-end way with adversarial
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Modules FID↓ IS↑ DS↑ PAcc(%)↑ PFID↓ FaceAP↑ FaceAR↑
Ours Base 51.77 6.98±0.28 0.52 75.17 33.72 0.014 0.043
+ PRM 46.35 7.92±0.24 0.52 79.62 25.91 0.138 0.220
+ PRM + TV Loss 44.02 8.06±0.18 0.51 81.40 24.79 0.143 0.212
+ PRM + TV Loss + FRM 45.82 7.83±0.34 0.51 82.44 23.14 0.246 0.272
+ PRM + TV Loss + FRM + Face Loss (0.01) 43.39 8.25±0.47 0.51 80.40 22.50 0.479 0.469
+ PRM + TV Loss + FRM + Face Loss (0.03) 43.98 8.47±0.35 0.51 80.34 21.73 0.511 0.491
- ISM + VanillaAE 46.32 7.96±0.21 0.52 76.74 25.10 0.325 0.336
- ISM + VanillaGAN 45.14 8.33±0.25 0.51 74.82 26.38 0.274 0.310
- CSP + SA 45.87 7.79±0.23 0.51 75.18 26.60 0.262 0.280

Table 3: Ablation study on different modules. +/- means adding or removing a module/loss.
- followed by + denotes replacing the former module with the later one.

losses. The results (- ISM + VanillaAE / - ISM + VanillaGAN) are worse than
ours. The reasons could be (1) the keypoints have higher variety, and (2) weak or noisy
layout condition signals can lead to worse generated keypoints. Our memory-based model
overcomes the above limitations and is necessary for keeping the keypoints within a desirable
distribution. We present more results in the supplementary.

Effectiveness of Contextual Structure Predictor. We replace the Contextual Structure
Predictor with a self-attention-based module (SA) as used in [13]. The layout context is
encoded using cross attention of each object’s label embedding, and person-specific features
are used to predict the structures. The results (- CSP + SA) are inferior to ours. The
reason is that [13] focuses more on enhancing appearance in a local context while ignoring
the relationships between objects in terms of classes, sizes, and positions in the global layout.

Effectiveness of Appearance Refiner and Losses. Using the ground truth person key-
points, we study the ablations of the person pose and face refiners and losses. It shows
that the PRM improves person FID, classification accuracy, face detection performance, and
even the image-level generation quality (better FID and IS). The TV loss slightly benefits the
overall results. FRM further contributes to better face detection AP and AR. The face loss
greatly improves the performance in face metrics, and also enhances FID and IS. Although
the person classification accuracy is slightly lower, the person FID is further improved.

5 Conclusion
We propose a novel approach to improve the person generation quality in layout-to-image
tasks. Firstly, we model the person intrinsic structures including pose and face keypoints
using a memory-based model. Secondly, we introduce the context-aware structure predictor
from the memory model using a person-centered graph neural network. Thirdly, we employ
person refinement modules that fuse person structural information with other objects for
final image generation. We show that the contextual structure predictor can predict reason-
able person keypoints from layouts. Our method achieves state-of-the-art results in multiple
person-related metrics and can generate reasonable person poses and better face regions.
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