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1 Overview
This supplemental material provides the details for: (1) Person Structure Representation:
the forms of pose and face keypoints (Sec. 2); (2) Models: detailed architectures, losses, and
implementations (Sec. 3); (3) Additional Results: more comparison results and discussions
(Sec. 4); (4) Ethics Statements: potential person ethical issues and measures (Sec. 5).

2 Structure Representation
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(a) Pose keypoints and segments. (b) Face keypoints as defined in [6].

Figure 1: The person pose and face structures used in our paper. R- or L- denotes right or
left points in the person’s perspective, respectively.
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The person keypoints, including pose keypoints and face keypoints, are extensively used
in our work. This section presents the details of the keypoint/segment representation for de-
scribing pose and face structure. The original COCO dataset [1] provides 17 pose keypoints,
while we add another point neck as the mean position of left shoulder and right shoulder,
and connect the neck with nose. The addition of the new point leads to a more natural con-
nection between the body and the head. The way to connect the pose keypoints as bone
segments is shown in Figure 1a, which also reflects the natural pose structure of a person.
As a result, a person pose is represented by 18 key points and 18 segments. Each face has
68 keypoints, and we follow the original form defined in COCO WholeBody dataset [6], as
shown in Figure 1b.

3 Models

3.1 Intrinsic Structure Model

The model architecture is illustrated in Figure 2. It includes three parts: structure encoder,
structure memory with vector quantization, and structure decoder. The model is built with
Linear layers considering the processed data are the coordinates of keypoints. Specifically,
the prior input channels (Ch) are 36 (18 × 2) for pose keypoints and 136 (68 × 2) for face
keypoints, which are flattened and normalized x and y coordinates of each keypoint. The
memory size NM is set to 64 for pose keypoints and 8 for face keypoints in our experiments,
but it is flexible to change the memory size according to different data varieties.
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Figure 2: Intrinsic Structure Model. The input K and prior input channels Ch depend on
the input types, such as pose keypoints (36) or face keypoints (136).
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3.2 Contextual Structure Prediction
The predictor used to infer the person keypoints is a multi-layer Graph Convolution Network
Gg. It captures the contextual person representations from relationships among objects, and
uses a classifier head Q to query the compatible pose/face keypoints from the pre-trained
memory bank (Section 3.1).

Node Feature Embedding. The objects and relationships features are encoded using the
linear embedding layers. Specifically, each object has three types of attributes including the
category oc ∈R64, the location oloc ∈R25 defined using a 5×5 grid, and the size osize ∈R10

which is categorized to 10 levels. The object’s location is specified by the center of the
bounding box, and the size attribute is represented by the ratio to the whole image. The
final concatenated object embedding size is thus fob j ∈ R99. The relationships are defined
by relative object locations and sizes. The surrounding and inside relationships are defined
if one object’s area can totally contain another object’s area, and vice versa. Otherwise,
using the polar coordinate system by setting a subjective object’s location as origin, the
left of, below, right of and above relationships are defined when the other object’s relative
radian falls in the range [0,π/4]∪ (7π/4,2π), (π/4,3π/4], (3π/4,5π/4] and (5π/4,7π/4],
respectively. The size of the relationship embedding fr ∈ R64.

Information Propagation. The GCN model processes the triples in the form (oi, r, o j),
where oi and o j are object nodes and r is their relationship. Figure 3 illustrates a detailed
example of how a person node’s feature is calculated when the person acts as the objective
in the triple (cloud, above, person) and as the subjective in another triple (person, left of,
skateboard). Each triple is first concatenated and then processed by two shared linear blocks
into hidden states (state feature is 512 in our work). The linear blocks are similar as defined
in Figure 2 except the batch normalization layer. Then, three subsequent linear heads g′s,
g′r, g′o are adopted for calculating the features for subjective, relationship, and objective,
respectively. The output channels are 512 for both g′s and g′o, and 64 for g′r. As the person
exists in two triples, the final features are pooled using the average function. A final linear
block is used to obtain the final object features. We use three layers in our work. At the end
of the last layer, a linear-layer-based classifier head Q is introduced to map the contextual
person features to classification features. In practice, we use the classifier Q to query the pose
keypoints and introduce another MLP-based module to infer the face keypoints conditioned
on the pose.

Person-centred GCN In the final layer, we only take person nodes’ features as inputs for
Q. But it is necessary to feed all the objects as inputs because other object-object relation-
ships will also be updated and contribute to the person nodes as information flows in the
graph. In training, an object is randomly set to subjective or objective.

3.3 Appearance Refinement Modules
PRM and FRM The architectures for pose and face refinement modules (PRM and FRM)
follow the structure of [11]. For the PRM, we introduced two heads where one is for gener-
ating person masks SM

p and the other one for learning semantic maps Sp, as shown in Figure
4. The FRM has a similar structure as PRM except that there is only one output for face

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015



4 TIAN ET AL.: ENHANCING PERSON SYNTHESIS IN COMPLEX SCENES

Person

Grass

Platform

Skateboard

Tree

Clouds

person

CC

Linear Block, 262, 512

person

person

cloud

cloud

skateboard

skateboard

above

Linear Block, 512, 512

Linear Block, 512, 512

left of

Layer-1

Legend

personcloud skateboardleft ofabove

In_Ch, Out_Ch

Subsequent Layers

output

Classifier head

Concatenation &
Average pooling operators

Example node features

C

Linear blocks

Figure 3: Contextual Structure Predictor. Left is the input layout. Taking the triple (cloud,
above, person) and (person, left of, skateboard) for example, the right shows the information
propagating among the three nodes with their relationship. The person acts as the subjective
and objective object and features are finally averaged using the pooling function.
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region semantic map generation. As the FRM is first pretrained for face generation and its
parameters are frozen, we add an extra adaption linear layer at the end for fine-tuning. The
PRM or FRM output person pose or face semantic maps of spacial size 64×64 and channel
180.
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Figure 4: The illustration for PRM module.

Image Generation Figure 5 illustrates the overview of the image generation in training
phase. We use bold symbols to denote data in batch form. The generator is built by a linear
layer followed by several ResNet Blocks (ResBlock). Each ResBlock contains two modula-
tion modules which adopt the semantic map to modulate (or denormalize) the intermediate
feature maps.

Semantic Map Construction. To construct the semantic map, we first use a mask re-
gressor M to generate the non-person objects’ masks mob j ∈ R32×32 from their category
embedding cob j concatenated with Gaussian noise zob j. The masks are further placed to their
layout locations defined by the bounding boxes. This is done by the function ToLayout op-
eration which performs bilinear interpolation on the masks and transforms the them to the
corresponding boxes in the layout. The layout-level object masks are denoted as m′

ob j.
Then, inspired by the ISLA-Norm [14], we perform cross product between cob j and

m′
ob j to construct the semantic map base. The cross product operation is shown as Mapping

function in Figure 5. We then use PRM and FRM for generating person pose and face
semantic maps and adopt the same ToLayout function to place person-related semantic maps
to layout and add them with the base semantic map. Finally, the semantic map ∈R180×H×W ,
where H and W is image height and width, respectively.

Modulation. The modulating in GAN has been widely used [2, 8], and our implementation
can be formulated as:

x̂ = x′ · γ +β (1)

where x′ is the Batch Normalized feature of input x and x̂ is the output of modulation layer.
γ and β are modulation parameters learnt from the semantic map. Note this part is different
form ISLA-Norm [14] because the semantic map aggregates all the objects and the persons
features before sending them to the modulation layer, while the ISLA-Norm separately learn
each object’s modulation parameters and averaging them later.
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Figure 5: The image generation illustration.

Learning and losses. We adopts a discriminator with stacks of standard ResBlocks [4] for
image-level and object-level discrimination. The object-level features are extracted by ROI-
Align [5] from their bounding boxes. The losses in training include image-level GAN loss,
object-level GAN loss, Total Variation (TV) loss, and face loss. The TV loss is formulated
as: ∑i, j

∣∣mi+1, j −mi, j
∣∣+∣∣mi, j+1 −mi, j

∣∣, where mx,y denotes pixel values at (x,y) on the mask.
The total loss can be formulated as follows:

Ltotal = λ1Limage +λ2Lob jects +λ3LTV +λ4L f ace, (2)

where the loss coefficients λ1 = 0.1, λ2 = 1.0, λ3 = 0.1, and λ4 = 0.3. We also test λ4 = 0.1
for face loss in the ablation study of the main paper.

3.4 Implementations.
We implemented our models using PyTorch [9]. The image generator is implemented on
top of LostGAN-v1 [14] with the aforementioned modifications. In training, the batch size
is set to 32 and 12 for 128 × 128 and 256 × 256 resolution, respectively. We use Adam
optimization method [7] with learning rate 1e−4 for both generator and discriminator in
image generation. We set the batch size to 128 for training the Intrinsic Structure Model and
the Contextual Structure Predictor. We use the cosine annealing to schedule the learning rate
in range [0,1e−3] at the end of each epoch.

4 Additional Results and Discussion

4.1 Intrinsic Structure Modeling.
Reconstruction Results. The structure reconstruction results are shown in Figure 7. The
ground truth keypoints for both pose and face are not always complete, as part of the key-
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points are likely to be missing which makes the prior learning challenging. For example,
the pose keypoints include standing (first column), sitting (3rd column), half-body (4th col-
umn), and upside-down (7th column), etc. The face keypoints are also various containing
more points. It shows that the proposed memory-bank-based model can successfully restore
the person pose and face keypoints. The restoration may not be exactly the same as the
inputs, but considering the real-world keypoints are in the continuous space, the discrete
memory space has caught the significant pose/face structures. It is flexible to change the
memory bank size, the reconstruction results become finer when using larger sizes. How-
ever, we found it is enough to use 64 for pose memory bank size and 8 for face memory
bank size to represent person structures, otherwise there would be more relatively repetitive
keypoints structures. There is also a trade-off between reconstruction precision and memory
bank querying accuracy because larger memory bank means harder to query.

(a) Pose keypoints reconstruction. (b) Face keypoints reconstruction.

Figure 6: The person keypoints reconstruction results of our Intrinsic Structure Model. Im-
ages in grey boxes are ground truth and in blue boxes are restored keypoints.

Effectiveness of Vector Quantization. In the main paper, we compared with the vanilla
auto encoder (VanillaAE), which has the same purpose as our Intrinsic Structure Model. The
main difference is vanilla auto encoder uses the continuous latent space versus our discrete
memory space implemented by Vector Quantization. The main paper’s ablation study quan-
titatively demonstrates that our model performed better, while this part evaluates by com-
paring the visualized results in terms of the structure reconstruction and prediction. Note
the continuous nature of the AE makes it need a regressor head for the Contextual Structure
Predictor rather than a classifier.

Taking the face keypoints for example, Figure 7a shows the reconstruction results of the
vanilla AE. The reconstruction is convincing, and the reconstructed keypoints are almost the
same as the original ones. However, when adopting the trained decoder with the Contex-

(a) VanillaAE face keypoints reconstruction
results.

(b) Face keypoints generation using Vanil-
laAE.

Figure 7: VanillaAE results. In comparison with our memory-based Intrinsic Structure
Model, the VanillaAE performed better in reconstruction. However, it was hard to generate
the contextual keypoints conditioned on the layout inputs.
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tual Structure Predictor, the results become distorted, as shown in Figure 7b. Theoretically,
regressing the right face keypoints is much harder, especially the input is only the layouts
of the persons and other objects. Thus, the condition is not strong enough to supervise
the generation of the keypoints in desirable distribution. In comparison, the usage of vec-
tor quantization makes it possible to project keypoints to some latent points, which can be
considered as the representative samples of the underlying manifolds.

4.2 Contextual Structure Predictor.
Contextual Keypoints Inference. Here we discuss more about how our method can infer
context-aware person keypoints. In Figure 8 (D), the layout indicates a person near a baseball
bat, and our method infers the holding pose that is corresponding with the context. For
method that does not consider context, [15] can only generate a person but is not matching
with the layout. Figure 9 (D) shows our method can also infer precise keypoints. The
layouts indicate four persons near a dining table, the predicted keypoints for the two persons
behind the dining table are half-body poses without legs as the legs might be obscured by
the tables. However, the inferred keypoints for the left and right persons near chairs have
half-leg segments, implying the persons might sit in the outer chairs and more body parts
can be seen. Figure 10 (D) shows a layout mainly containing a person near a horse. Our
method not only infers a riding pose but also predicts there should be only one leg appear
and another one is obscured by the horse.

Keypoints Completion Ability. Inferring person keyponints from the layout also brings
an advantage that is Keypoints Completion. Even the ground truth person keypoints are not
complete and the face keypoints only exist in part of the images as most of the faces are
very small. As shown in Figure 9 (A), there is only one person that has relatively complete
keypoints while others’ keypoints are just several segments. In this case, it is hard to gener-
ating better persons even using the ground truth person keypoints. However, our method is
able to infer relatively complete keypoints complying with the context, which is beneficial
for person generation. We speculate this is also the reason that the person classification ac-
curacy (PAcc) achieves the highest when using the predicted keypoints (please refer to the
quantitative results in main paper).

4.3 Image Generation Results.
The results shown in the main paper are in 256 × 256 resolution for better viewing. We
show more 256 × 256 resolution results and comparisons with LostGAN-v2 [15] in Figure
8 and 9, and more of those for 128 × 128 resolution in Figure 10. The following gives more
discussion from different perspectives.

Crowd Generation. There exist images containing many persons, or crowds, as shown
in Figure 8 (A) and 10 (C)(E). Existing method [15] is hard to generate reasonable persons
where the synthesized persons are distorted, such as in Figure 8 (A), or incomplete, as shown
in Figure 10 (E). Thanks to the person refinement modules, our method refines each person
separately by generating their intermediate semantic features, which helps generate each
person with clear body shape even when these persons are very close or overlapped in the
above images.
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Face Generation. As shown in Figure 8 (C) and 9 (A)(C)(D), the generated person faces
are clearer and much more recognizable compared with results of existing method. Also,
the generated faces match the inferred face keypoints. Actually, the face are almost ignored
using existing methods, which reveals it is very challenging to generate reasonable face
regions together with persons in complex scenes. Although our method can deliver better
face generation, it is still difficult to generate more realistic faces with more details. We
discuss this limitation in section 4.4.

User Study Interface. Figure 11a and 11b show the user interface for the comparing re-
sults with LostGAN-v2, and whether our predicted person keypoints are compatible with the
layout, respectively. The two user experiments are separately conducted, in which each of
the 10 users was given about 200 cases. We also shuffle the testing images and present them
in random order.

4.4 Limitations and Future Work.
Limitations. Although our experiments demonstrate convincing person generation results
qualitatively and quantitatively, we admit there mainly exist two limitations. First, the di-
versity of inferred keypoints. When the layouts are similar, the inferred keypoints tend to
be similar, and this affects the diversity of person keypoints. Second, face details genera-
tion. We found when face regions are smaller, it is hard to generate rich face details, as
shown in Figure 8(A) and all 128 × 128 images in Figure 10. By inspecting the datasets, we
found there are only about 20% images with face areas larger than 10% of the image. This
imbalance might causes biases and lead the model to generate faces with less details.

Future Work. Our future work can be summarized as follows. First, keypoints diversity.
The intrinsic model has encoded the most representative person structure information and
applying keypoints augmentation [3] can make slight change without changing the essence.
Secondly, face details improvement. Further investigation includes incorporating methods
from head inpainting methods [12]. Finally, further exploration include applying the pro-
posed method in other tasks, such as text-to-image generation, which would benefit from
person structure learning.

5 Ethics statement.
This work depends on the publicly released dataset Microsoft COCO, COCO-Stuff and
COCO WholeBody. This work improves the person image generation quality, which can
facilitate the content creation industry. This work does not target person identity, for exam-
ple, learning the face or pose information for personal identification. However, the learnt
representations may include biases that are undesirable. In generating persons, our work
may unintentionally leak the privacy of persons, generate biased appearance and be used
for potentially inappropriate applications, such as synthesizing fake portraits [10]. Viable
solutions to prevent misuse and negative effects include: (1) adopting effective methods for
detecting fake content generated by deep models [16], (2) using watermarking or obfuscation
[13] to protect generated persons.
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Figure 8: Comparison between our methods using predicted keypoints (Pred. KP) with
LostGANv2 in 256 × 256 resolution. The predicted face keypoints are included in Pred.
KP. The ground truth keypoints (GT KP) with the layout are also shown for comparison.
Zoom in for better view.
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Figure 9: Comparison between our methods using predicted keypoints (Pred. KP) with
LostGANv2 in 256 × 256 resolution. The predicted face keypoints are included in Pred.
KP. The ground truth keypoints (GT KP) with the layout are also shown for comparison.
Zoom in for better view.
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Figure 10: Comparison between our methods using predicted keypoints (Pred. KP) with
LostGANv2 in 128 × 128 resolution. The predicted face keypoints are included in Pred.
KP. The ground truth keypoints (GT KP) with the layout are also shown for comparison.
Zoom in for better view.

(a) User Study for comparison with Lost-
GANv2.

(b) User Study for whether the predicted per-
son keypoints match the layout or not.

Figure 11: Examples of user interface in our user study.
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