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Appendix

1 Further Experimental Details and Findings

1.1 Platform Details
We implement our XModalViT model using the PyTorch [3] deep learning framework, on
an Ubuntu 20.04 workstation with a single Nvidia GeForce RTX 3090 GPU, an 8-core Intel
Xeon processor and 32 GBs of RAM. Since we are using a fixed-size queue to store XMA
representations, we do not have a dependency on batch-size for the purpose of negative
sampling as part of our contrastive learning phase, which enables us to train both the teacher
and the students on a single GPU.

1.2 Dataset Statistics

Dataset #Classes #Photos #Sketches #Sketches/Photos Test Fraction
QMUL-Shoe-V2 – 2000 6648 2 to 4 0.1
QMUL-Chair-V2 – 400 1275 2 to 4 0.1
Sketchy 125 12,500 75,471 5 to 9 0.1

Table 1: Details of the datasets used for experimental evaluation.

1.3 Effects of Varying the Queue Sizes in XAQC
We vary the XAQC queue sizes as 2m, where m ∈ {1,2, ...blog2 Nc}, and N is the total
number of datapoints. The observed trend has been graphically depicted in Figure 1, where
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it can be seen that the accuracy is minimum at m = 1, when the objective is equivalent to
InfoNCE, which only performs reasonably with larger batch-sizes. However, the accuracy
begins to saturate near its maximum at m = blog2 Nc.
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Figure 1: Acc@1 with varying XAQC queue sizes 2m, where m ∈ {1,2, ...,blog2 Nc}, and N is the
total number of datapoints.

1.4 ViT+CNN Backbones
While keeping the ViT-B teacher backbones, we switched the student backbones to ResNet18
[1] and obtained acc@1 of 44.9% and 63.21% on the Shoe-V2 and Chair-V2 datasets respec-
tively. However, with the InceptionV3 [4] network as the student backbones, the acc@1 on
the same datasets drop to 42.5% and 62.07% respectively. This goes on to show that, once
our ViT-Base networks as the teacher encoders learn the fused cross-modal attention repre-
sentations, the correct inductive biases in CNNs can be used to approximate them. However,
for the teacher network, there is no straightforward way to formulate the XMA operator that
would make sense over the space of CNN feature maps. The cross-modal interaction be-
tween the global class-token of one modality and the local patch embeddings of the other is
something that can be more naturally defined for Vision Transformers.

2 Pseudocodes

This section provides algorithmic pseudocodes for the core components of the XModalViT
framework.

Notations like tuple assignment:

(a,b) = (b,a) (1)

are inspired by Python’s syntax. The construct “with no gradient” signifies that the output of
the operation performed within the block is treated like a constant, and its computation does
not affect the gradient of any of the learnable parameters that might have been used for that
purpose.

2.1 Modality Fusion Network
The objective of the MODALITY-FUSION-NETWORK is to train the cross-modal attention
(XMA) based teacher network, Γ, that fuses information across the photo and the sketch
modalities. Algorithm 1 provides a pseudocode for the same.
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Algorithm 1: MODALITY-FUSION-NETWORK: Train the cross-modal attention
(XMA) based teacher network, Γ, that fuses information across the photo and the
sketch modalities.

Input : A set of photos P and corresponding sketches S; Cross-attention queue
size k; Learning rate η ; Number of epochs N

Output: Cross-Modal Fusion Network (Teacher): Γ

1 Q←− Randomly initialized queue of size k
2 for epoch← 1 to N do
3 p∼P, (s1,s2)∼ S | p←→ (s1,s2)

4 (x1
p,x1

s )←− Γ(p,s1)

5 // Outputs are treated as constants
6 with no gradient:
7 (x2

p,x2
s )←− Γ(p,s2)

8 Lteacher←− XAQC(x1
p,x2

s ,Q)
9 Q←−Q.enqueue(x2

s )
10 Γ←− Γ−η∇ΓLteacher

Q is initialized as a queue of size k containing random vectors, which is later used
for storing XMA-sketch representations. We sample a photo p and 2 of its corresponding
sketches s1 and s2. In line-5, (p,s1) is propagated through the teacher network for obtaining
its XMA-photo embedding, x1

p. The XMA-sketch embedding, x2
s , for (p,s1) is computed in

this manner. We then compute the XAQC loss for the teacher by treating x2
s as a soft-target

for x1
p and all the representations in x1

s as negatives. We then enqueue x1
s into Q in line-9.

We finally update the teacher network with the gradient of the XAQC loss with respect to its
parameters.

2.2 Cross-Modal Knowledge Distillation
The objective of cross-modal knowledge distillation is to decouple the input-space of the
modality fusion network (teacher), Γ, into independent, modality-specific encoders, ξphoto
and ξsketch. Algorithm 2 describes the process in the form of a pseudocode.

We start by sampling 3 corresponding photo-sketch pairs (p1,s1),(p2,s2) and (p3,s3).
We propagate these pairs through the modality fusion network (teacher), Γ, to obtain their
XMA-photo and XMA-sketch embeddings. The photos and the sketches are then separately
encoded via the photo and the sketch students respectively, to obtain the approximate ver-
sions of their XMA representations, i.e., zpi and zsi . With the objective of aligning these
z∗ representations with the true XMA representations, x∗, obtained from the teacher, we
minimize the contrastive XAQC loss between the two (lines 11 and 12). We also aim to
preserve the geometry of the teacher’s representation space in that of the students’ by distill-
ing distance and angular relationships between arbitrary k-tuples of datapoints. This process
of cross-modal relation distillation (XMRD) is depicted in lines 16-18. m, here, has been
introduced for the purpose of conciseness, serving as an abstract notation for modality, i.e.,
standing for both photos and sketches. ψ1 and ψ2 are the distance and angle relation func-
tions respectively, and δ is the Huber loss, as described in the main text. The total student
loss is computed as the sum of the losses from the individual students and the XMRD loss
(weighted by a balancing factor of λ ). We finally update the individual students by the
gradient of the total student loss with respect to the weights of the corresponding student
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Algorithm 2: CROSS-MODAL-KNOWLEDGE-DISTILLATION: Decouple the do-
main of Γ by transferring its representations to independent encoders, ξphoto and
ξsketch.

Input : A set of photos P and corresponding sketches S; Teacher network Γ;
Cross-attention queue size k; Learning rate η ; Number of epochs N

Output: Student Networks - Photo encoder ξphoto and sketch encoder ξsketch
1 QP ,QS ←− Randomly initialized queues of size k
2 for epoch← 1 to N do
3 p1 ∼P, s1 ∼ S | p1←→ s1
4 p2, p3 ∼P, s2,s3 ∼ S | p2←→ s2, p3←→ s3
5 // Outputs are treated as constants
6 with no gradient:
7 for i← 1 to 3 do
8 (xpi ,xsi)←− Γ(pi,si)

9 for i← 1 to 3 do
10 (zpi ,zsi)←− ξphoto(pi),ξsketch(si)

11 Lphoto-student
XAQC ←− XAQC(xp1 ,zp1 ,QP)

12 Lsketch-student
XAQC ←− XAQC(xs1 ,zs1 ,QS)

13 QP ←−QP .enqueue(xp1)
14 QS ←−QS .enqueue(xs1)
15 // m ∈ {p,m}
16 π teacher

m ←− ψ1(xm1 ,xm2)+ψ2(xm1 ,xm2 ,xm3)

17 πstudent
m ←− ψ1(zm1 ,zm2)+ψ2(zm1 ,zm2 ,zm3)

18 LXMRD←− δ (π teacher
p ,πstudent

p )+δ (π teacher
s ,πstudent

s )

19 Lstudent←−Lsketch-student
XAQC +Lphoto-student

XAQC +λ ·LXMRD

20 ξphoto←− ξphoto−∇ξphoto
Lstudent

21 ξsketch←− ξsketch−∇ξsketch
Lstudent

encoders.

3 Embedding Visualizations
Figure 2 shows the test-set embeddings of the photo (red) and sketch (blue) student encoders,
projected onto a 2-dimensional space via UMAP [2]. The layout of the datapoints across the
two modalities can be seen as being very similar, indicating that both the encoders have
learned to model the distribution of the underlying shared abstract concept. As a result of
this, and by the virtue of the instance-discriminative XAQC loss, photo-sketch pairs of the
same instance get mapped close to each other, a phenomenon that has also been depicted in
the visualizations.
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(a)

(b)

(c)
Figure 2: UMAP [2] visualizations of photo-student (red) and sketch-student (blue) embeddings on
the (a) QMUL-Shoe-V2 (b) QMUL-Chair-V2 and (c) Sketchy datasets.
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4 Retrieval Results
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Figure 3: Qualitative fine-grained SBIR results on Sketchy dataset.

4.1 Sketchy Dataset
Apart from the instance-discriminative fine-grained features, the network learns attribute
information such as classes with features that are closely related visually (rows 1, 3, 6, 11
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Figure 4: Qualitative fine-grained SBIR results on Shoe-V2 dataset.
of Figure 3), object orientation and geometry (rows 8, 5, 4, 10 Figure 3), and even naturally
occurring relationships (rows 5.1 and 5.2 Figure 3).

4.2 QMUL-Shoe-V2 Dataset
Most instances with a sufficient number of fine-grained instance-discriminative features can
be seen to appear in the top 1. However, for the ones that do get demoted in rank, (row 4 of
Figure 4), are preceded by an instance that have noticeable features in common that could
cause confusion. Some false positive top-1 results might occur as a side-effect of modality
fusion (row 10 of Figure 4), where the embedding space also captures the texture information
from the photo modality, which may not always be necessarily relevant (causing a shoe with
a similar shiny texture as the ground-truth being returned as the first retrieval result in row
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Figure 5: Qualitative fine-grained SBIR results on Chair-V2 dataset.
10 of Figure 4).

4.3 QMUL-Chair-V2 Dataset

The modality fusion operator is able to capture cross-modal information such as color and
texture, which are beyond the geometric structure of sketches (rows 4, 5, 7 of Figure 5), while
being able to able to attend to the modality-native attributes, such as structural geometry and
orientation (rows 3, 8, 9, 10, 11 of Figure 5).
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Figure 6: Attention maps on photos and corresponding sketches obtained from the student encoders
(examples from the Shoe-V2, Chair-V2 and Sketchy datasets).

5 Attention Maps
Figure 6 depicts attention maps for photos and two of their corresponding sketches obtained
from the photo and the sketch students respectively. Both the networks can be seen to gener-
ally focus on the same object localities irrespective of the modality. Also, within the sketch
modality, the regions attended to by the sketch encoder are quite stable, indicating that the
network has learned to focus more on the structural information and is robust to the variations
in sketching style.
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