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Abstract
In this work we challenge the common approach of using a one-to-one mapping

(‘translation’) between the source and target domains in unsupervised domain adapta-
tion (UDA). Instead, we rely on stochastic translation to capture inherent translation
ambiguities. This allows us to (i) train more accurate target networks by generating
multiple outputs conditioned on the same source image, leveraging both accurate trans-
lation and data augmentation for appearance variability, (ii) impute robust pseudo-labels
for the target data by averaging the predictions of a source network on multiple trans-
lated versions of a single target image and (iii) train and ensemble diverse networks
in the target domain by modulating the degree of stochasticity in the translations. We
report improvements over strong recent baselines, leading to state-of-the-art UDA re-
sults on two challenging semantic segmentation benchmarks. Our code is available at
https://github.com/elchiou/Beyond-deterministic-translation-for-UDA.

Figure 1: Unsupervised Domain Adaptation (UDA) with stochastic translation: we rely on
a content-style separation network to associate a synthetic image from the GTA5 dataset
(source) with a distribution of image translations to the target domain. These translations
preserve the content signal and adopt the appearance properties of the Cityscapes dataset
(target). We use the resulting images to train a target-domain network tasked with predicting
the labels of the respective source-domain image, irrespective of the style variation.

1 Introduction
Unsupervised Domain Adaptation (UDA) aims at accommodating the differing statistics be-
tween a ‘source’ and a ‘target’ domain, where the source domain comes with input-label
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pairs for a task, while the target domain only contains input samples. Successfully solving
this problem can allow us for instance to exploit synthetically generated datasets that come
with rich ground-truth to train models that can perform well in real images with different
appearance properties. Translation-based approaches [5, 10, 16, 35, 37] rely on establish-
ing a transformation between the two domains (often referred to as ‘pixel space alignment’)
that bridges the difference in their statistics while preserving the semantics of the translated
samples. This translation can then be used as a mechanism for generating supervision in the
‘target’ domain based on ground-truth originally available in a ‘source’ domain.

In this work we address a major shortcoming of this approach - namely the assump-
tion that this translation is a deterministic function, mapping a single source to a single
target image. Recent works on the closely related problem of unsupervised image transla-
tion [1, 13, 15, 42] have highlighted that this is a strong assumption and is frequently violated
in practice. For instance a nighttime scene can have multiple daytime counterparts where
originally invisible structures are revealed by the sun and also illuminated from different
directions during the day. To mitigate this problem these techniques introduce methods for
multimodal, or stochastic translation, that allows an image from one domain to be associated
with a whole distribution of images in another. An earlier work [6] has shown the potential of
generating multiple translations in the narrow setting of supervised domain adaptation across
different medical imaging modalities. In this work we exploit stochasticity in the problem of
UDA in three complementary ways and show that stochastic translation improves upon the
current state-of-the-art in UDA on challenging semantic segmentation benchmarks.

Firstly, we use stochastic translation across the source and target domains by relying
on the multimodal (or stochastic) translation method of [13]. We show that allowing for
stochastic translations yields clear improvements over the deterministic CycleGAN-based
baseline, as well as all published pixel space alignment-based techniques. We attribute this
to the ability of the multimodal translation to generate more diverse and sharper samples,
that provide better training signals to the target-domain network.

Secondly, we exploit the ability to sample multiple translations for a given image in
order to obtain better pseudo-labels for the unlabelled target images: we generate multiple
translations of every target image into the source domain, label each according to a source-
domain CNN, and average the resulting predictions to form a reliable estimate of the class
probability. This is used as supervision for target-domain networks, and is shown to be
increasingly useful as the number of averaged samples per image grows.

Thirdly, we modify the variance of the latent style code in order to train and ensemble
complementary target-domain networks, each of which is adapted to handle a different de-
gree of appearance variability. The results of ensembling these networks on the target data
are then used to train a single target-domain network that outperforms all methods that also
rely on ensembling-based supervision in the target domain.

We show that each of our proposed contributions yields additional improvements over
strong recent baselines, leading to state-of-the-art UDA results on two challenging semantic
segmentation benchmarks.

2 Related Work
UDA approaches aim at learning domain invariant representations by aligning the distribu-
tions of the two domains at feature/output level [3, 19, 20, 22, 28, 31, 40] or at image
level [5, 10, 16]. Based on the observation that the source and the target domain share a
similar semantic layout, [28, 30] rely on adversarial training to align the raw output and en-
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tropy distributions respectively. However, such a global alignment does not guarantee that
individual target samples are correctly classified. Category-based feature alignment methods
[18, 25, 29, 31, 33, 40] attempt to address this problem by mapping target-domain features
closer to the corresponding source-domain features.

Image-level UDA methods aim at aligning the two domain at the raw pixel space. [5, 10,
16, 37] rely on CycleGAN [41] to translate source domain images to the style of the target
domain. Two recent works [19, 36] bypass the need for training an image translation network
by relying on simple Fourier transform and global photometric alignment respectively.

Complementary to the idea of translation is the use of self-training [26, 39, 43, 44]
which has been originally used in semi-supervised learning. Self-training iteratively gen-
erates pseudo-labels for the target domain based on confident predictions and uses those to
supervise the model, implicitly encouraging category-based feature alignment between the
source and the target domain. Another direction pursued in [7, 21] is to leverage the unla-
beled target data by using consistency regularization to make the model predictions invariant
to perturbations imposed in the input images.

Two recent works [5, 16] that rely on both image-level alignment and self-training are
more closely related to our work. [16] relies on CycleGan to translate source images to the
style of the target domain. They train the image translation network and the segmentation
network alternatively and introduce a perceptual supervision based on the segmentation net-
work to enforce semantic consistency during translation. They also generate pseudo-labels
for the target data based on high confident predictions of the target network and use those
to supervise the target network. [5] improves upon [16] by replacing the single-domain
perceptual supervision with a cross-domain perceptual supervision using two segmentation
networks operating in the source and the target domain respectively. In addition, they rely on
both the source and the target networks to generate pseudo labels for the target data. Similar
to these works we rely on image-to-image translation to translate source images to the style
of the target domain, but we go beyond their one-to-one mapping approach which allows
us to leverage both accurate translation and data augmentation for appearance variability.
In addition, as in [5] we use source and target networks to generate pseudo-labels, but we
exploit stochasticity in the translation to generate more robust pseudo-labels that allow us to
train accurate target-domain networks.

3 Methods
We start in Sec. 3.1 by introducing the background of using translation in UDA, and then
introduce our technical contributions from Sec. 3.2 onwards.

3.1 Domain Translation and UDA

In UDA we consider a source dataset with paired image-label data: S = {(xi
s,y

i
s)}, i ∈ [1,S]

and a target dataset comprising only image data T = {xi
t}, i ∈ [1,T ]. Our task is to learn a

segmentation system that provides accurate predictions in the target domain; we assume a
substantial domain gap, precluding the naive approach of training a network on S and then
deploying it in the target domain.

Output-space alignment UDA approaches [28] train a single segmentation network, F on
both the source and the target images, using a cross-entropy loss in the source domain and
an adversarial loss in the target domain to statistically align the predictions on target images
to the distribution of source predictions. This results in a training objective of the following
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form:
L(F) = ∑

(x,y)∈S
Lce(F(x),y)+ ∑

x∈T
Ladv(F(x)), (1)

where F(x) the softmax output.
In [30] entropy-based adversarial training is used to align the target entropy distribution

to the source entropy distribution instead of aligning the raw predictions, resulting in the
following objective:

L(F) = ∑
(x,y)∈S

Lce(F(x),y)+ ∑
x∈T

Ladv(E(F(x))), (2)

where E(F(x)) =−F(x) log(F(x)) is the weighed self-information.
Given that the network provides low-entropy predictions on source images, adversarial

entropy minimization promotes low-entropy predictions in the target domain. Still, having
a single network F that successfully operates in both domains can be challenging due to the
broader intra-class variability caused by the domain gap.

Pixel-space alignment approaches try to mitigate this problem by establishing a relation
between the distributions of the source and target domain images and using that to supervise
a network that only operates with target-domain images. In its simplest form, adopted also
in [2, 10, 16, 34, 37] this relation is a deterministic translation function T that maps source
images to the target domain, resulting in the following objective:

L(Ft)= ∑
(x,y)∈S

Lce(Ft(T[x]),y)+ ∑
x∈T

Ladv(E(Ft(x))), (3)

where the difference with respect to Eq. 2 is that the translated version of x, T[x] is passed
to the target-domain segmentation network, Ft . A straightforward way of obtaining such a
translation function is through unsupervised translation between the two domains [41].

This approach creates a target-adapted variant of the source-domain dataset, allowing us
to train a single network that is tuned exclusively to the statistics of the target domain. This
reduces the intra-class variance and puts less strain on the segmentation network, but relies
on the strong assumption that such a deterministic translation function exists. In this work
we relax this assumption and work with a distribution on translated images. This better
reflects most UDA scenarios and provides us with novel and simple tools to improve UDA
performance, as described below.

3.2 Stochastic Translation and UDA

We propose to replace the deterministic translation function T[x], with a distribution over
images given by T[x,v],v ∼N (0,I), where v is a random vector sampled from a normal dis-
tribution with zero mean and unit covariance [13]. For instance when translating a nighttime
scene into its daytime scene, the random argument can reflect the position of the sun, clouds
or obscured objects. For the synthetic-to-real case that we handle in our experiments we can
see from Fig. 1 that the translation network can indeed generate scenes illuminated differ-
ently as well as different cloud patterns, allowing us to capture more faithfully the range of
scenes encountered in the target domain. We note that T remains deterministic and can be
expressed by a neural network, but has a random argument which results in a distribution on
translated images.
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This change is reflected in the UDA training objective by replacing the loss of the trans-
lated image with the expected loss of the translated image:

L(Ft) = ∑
(x,y)∈S

Ev [Lce(Ft(T[x,v]),y)]+ ∑
x∈T

Ladv(E(Ft(x))), (4)

where the expectation is taken with respect to the random vector v ∼ N (0,I), driving the
stochastic translation. We note that during training we create minibatches by first sampling
images from S and then sampling v once per image, effectively replacing the integration in
the expectation with a Monte Carlo approximation.

Our stochastic translation network relies on MUNIT [13]: we start from reconstructing
images in each domain through content and style encodings, where content is fed to the
first layer of a generator whose subsequent layers are modulated by style-driven Adaptive
Instance Normalization [12] - this amounts to minimizing the following domain-specific
autoencoding objectives:

Ls = ∑
x∈S

∥x−Gs(Cs(x),Ss(x))∥, Lt = ∑x∈T ∥x−Gt(Ct(x),St(x))∥,

where Cs,Ss,Gs are the content-encoder, style-encoder and generator networks for the source
domain s respectively, while Ct ,St ,Gt are those of the target domain t.

The basic assumption is that the commonalities between two domains are captured by
the shared content space, allowing us to pass content from the source image to its target
counterparts, as also shown in Fig. 1. The uncertainty in the translation is captured by a
domain-specific style encoding that is inherently uncertain given the source image.

This results in the following stochastic translation function from source to target:

T[x,v] .= Gt(Cs(x),v), v ∼N (0,I), x ∈ S,

where we encode the content of the source image through Cs(x) and then pass it to the
target-domain generator Gt that is driven by a random style code v. A similar translation is
established between the target and source domains, and adversarial losses on both domains
ensure that the resulting translations appear as realistic samples of the respective domains.

The alignment of the shared latent space for content is enforced by a cycle translation
objective:

Lc
cycle = ∥Ct(Gt(Cs(x),v))−Cs(x)∥2, x ∈ S, v ∼N (0,I),

ensuring that regardless of the random style code, we can recover the original content Cs(x)
by encoding the translated image through the respective content encoder. A similar loss is
used for the style code:

Ls
cycle = ∥St(Gt(Cs(x),v))−v∥2, x ∈ S, v ∼N (0,I).

We preserve semantic information during translation by imposing a semantic consistency
constraint to our stochastic translation network using a fixed segmentation network F pre-
trained on source and target data using Eq. 2. Given an image x we obtain the predicted labels
before translation as p = argmax(F(x)) and enforce semantic consistency during translation
using an objective of the following form:

Lsem = Lce(F(T[x,v]), p). (5)

The losses are applied to translations to both domains since unlike UDA, there is no special
‘source’ and ‘target’ domain.
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Source Target translations
Figure 2: Diverse translations of im-
ages from the GTA source dataset to the
Cityscapes target dataset. We generate di-
verse variants of the same scene, captur-
ing more faithfully the data distribution in
the target domain.

We argue that stochastic translation provides
us with a natural mechanism to handle UDA
problems with large domain gaps where things
may unavoidably get ‘lost in translation’; the
content cycle constraint can help preserve se-
mantics during translation, while the random
style allows the translated image appearance to
vary freely, avoiding a deterministic and blunt
translation. This is demonstrated in Fig. 2,
where we show some of the samples obtained
by our method.

3.3 Stochastic
translation and pseudo-labelling
Having shown how stochastic translation from
the source to the target domain can be integrated
in the basic formulation of UDA, we now turn to exploiting stochastic translation from the
target to the source domain, which is freely provided by the cycle-consistent formulation of
[13].

In particular we consider a complementary segmentation network, Fs, that operates in
the source domain and can be directly supervised from the labeled source dataset based on a
cross-entropy objective:

L(Fs) = ∑
(x,y)∈S

Lce(Fs(x),y). (6)

This network can provide labels for the target-domain images, once these are translated from
the target to the source domain; these pseudo-labels of the target data can in turn be used to
supervise the target-domain network through a cross-entropy loss.

Figure 3: Stochastic translation for pseudo-
labeling: the target image (left) results in
multiple source-domain translations which are
processed by the source-domain network, Fs
and averaged to produce pseudo-labels.

In the case of deterministic translation
pseudo-labels would be obtained by the fol-
lowing expression:

ŷ(x) = Fs(I[x]), x ∈ T , (7)

where I is the inverse transform from the
target to the source domain, and ŷ indicates
the pixel-level posterior distribution on la-
bels.

In our case however we have a whole
distribution on translations for every image in T . We realise that we can exploit multiple
samples to obtain a better estimate of the pseudo-labels. In particular we form the following
Monte Carlo estimate of pseudo-labels:

ŷ(x) = Ev [Fs(I[x,v])] , x ∈ T ,v ∼N (0,I)

≃ 1
K

K

∑
k=1

Fs(I[x,vk]),

where vk are independently sampled from the normal distribution. As shown in Fig. 3 the
label maps obtained through this process tend to have fewer errors and be more confident,
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since averaging the results obtained by different translations can be expected to cancel out
the fluctuation of the predictions around their ground-truth value.

Our experimental results indicate that using K = 10 yields substantially better results
than using a single sample. We also note that pseudo-label generation is a one-off process
done prior to training the target-domain network, and consequently the number of samples,
K, does not affect training time.

3.4 Stochasticity-driven training of diverse network ensembles

An experimental approach that has been recently adopted by several recent works [5, 36]
consists in ensembling different networks trained for UDA, and using their predictions as an
enhanced pseudo-labeling mechanism.

Based on the understanding that the stochasticity driving our translation mechanism can
be seen as implementing appearance-level dataset augmentation in the target domain, we
introduce a simple twist to the translation mechanism that allows us to train networks that
operate in different regimes. For this we scale by a constant the variance of the normal
distribution used to sample the random style code - this amounts to generating more diverse
translations than those suggested by the image statistics of the target domain. On one hand
this trains a target network that can handle a broader range of inputs, but on the other hand it
may waste capacity to handle unrepresentative samples.

Figure 4: Ensembling of a triplet of networks
— two target networks trained with different
degrees of stochasticity in the translation (σ2)
and a source network — for robust pseudo-
labeling.

We train two such networks, one with
the variance left intact and the other with
the variance scaled by 10, and average their
predictions with those of the source-domain
network described in the previous subsec-
tion as shown in Fig. 4. Our results show
that this triplet of networks yields a clear
boost over the baseline operating with a sin-
gle network.

Further following common practice in
UDA we use the resulting ensembling re-
sults as pseudo-labels in the next round of training - this yields further improvements, as
documented in detail in the experimental results section.

3.5 Training objectives

Firstly, we train our stochastic translation network using the process of [13] and introduce a
semantic consistency loss as in [10] to preserve semantics during translation.

For the target-domain network the basic objective has already been provided in Eq. 4,
where Lce is the standard cross-entropy loss and Ladv is the adversarial entropy minimiza-
tion objective [30]. A more sophisticated objective can train this network with pseudo-labels,
obtained either from a source-domain network as described in Sec. 3.3 or from the ensem-
bling of multiple networks, as described in Sec. 3.4. In that case the objective becomes:

L(Ft) = ∑
(x,y)∈S

Ev [Lce(Ft(T[x,v]),y)]+

∑
x∈T

Ladv(E(Ft(x)))+ ∑
x∈T

Lθ
ce(Ft(x),argmax(ŷ)),

(8)
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where the cross entropy loss Lθ
ce(Ft(x)) is only applied on pseudo-labels where the dominant

class has a score above a certain threshold θ . Similar to [43] we use class-wise confidence
thresholds to address the inter-class imbalance and avoid ignoring hard classes. We provide
more details in the supplementary material.

Finally, for the source-domain network, we observed experimentally that we obtain better
results by adding an entropy-based regularization to the output of Fs when it is driven by
translated target imagesThe objective function for the source network becomes:

L(Fs) = ∑
(x,y)∈S

Lce(Fs(x),y)+ ∑
x∈T

Ev [Ladv(Fs(I[x,v]))] , (9)

forming the source-domain counterpart to the objective encountered in Eq. 4. When pseu-
dolabels are available for the target domain, we train the source network using the source-
domain counterpart of the objective in Eq. 8.

4 Experiments
We evaluate the proposed approach on two common UDA benchmarks for semantic seg-
mentation. In particular we use the synthetic dataset GTA5 [23] or SYNTHIA [24] with
ground-truth annotations as the source domain and the Cityscapes [8] dataset as the target
domain with no available annotations during training. We provide details about the datasets
in the supplementary material. We evaluate the performance using the mean intersection
over union score (mIoU) across semantic classes on the Cityscapes validation set. We rely
on MUNIT [13] to establish a stochastic translation across the source and target domain.
We train two different architectures, i.e., DeepLabV2 [4] with ResNet101 [9] backbone, and
FCN-8s [17] with VGG-16 [27] backbone. We provide implementation details in the sup-
plementary material.

Stochastic translation: We start by examining in how stochastic translation improves
performance compared to deterministic translation. In all cases the segmentation model
is DeepLabV2 [4] and the source and target datasets are GTA5 [23] and Cityscapes [8]
respectively. In Table 1 we start with an apples-to-apples comparison that builds on directly
on the ADVENT baseline [30]; the first two rows compare the originally published and
our reproduced numbers respectively. The third row shows the substantial improvement
attained by training the system of ADVENT using translated images - which amount to
training with Eq. 3. The forth row reports our stochastic translation-based result, amounting
to training with Eq. 4. We observe a substantial improvement, that can be attributed solely to
the stochasticity of the translation. The last row shows that imposing a semantic consistency
constraint as described in Eq. 5 further improves the performance.
Pseudo labeling: As discussed in Section 3.3 we translate from the target to the source do-
main and generate pseudo labels for the target data. The first three rows in Table 2 show the
impact of the number of samples K, on performance. Averaging the predictions of multiple
translations for a given target image improves the performance and allows to obtain better
pseudo labels for the target domain. Our results show that using 10 samples yields better
performance. In rows 4, 5 of the same table we report the performance obtained from the
two target networks trained with different degrees of stochasticity in the translation as de-
scribed in Sec. 3.4. Averaging the prediction of the three networks gives the best results,
indicating the complementary of the model predictions. We also provide qualitative results
in the supplementary material.
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Method Output space Pixel space mIoU
ADVENT [30] ✓ 43.8

ADVENT ∗ ✓ 42.9
ADVENT ∗+
CycleGAN∗ ✓ ✓ 45.1

Ours ✓ ✓ 46.2
Ours w/ Lsem ✓ ✓ 46.6

Table 1: GTA to Cityscapes UDA using
stochastic translation: We train ADVENT us-
ing synthetic images obtained from determin-
istic translation (CycleGAN) and stochastic
translation (Ours). We observe a clear im-
provement thanks to pixel-space alignment
based on stochastic translation. ∗ denotes our
retrained models

Fs, K=1 Fs, K=5 Fs, K=10 Ft , σ2 = 1 Ft , σ2 = 10 mIoU
✓ 43.3

✓ 44.0
✓ 44.4

✓ 46.6
✓ 46.1

✓ ✓ 47.7
✓ ✓ 47.6

✓ ✓ 47.7
✓ ✓ ✓ 48.2

Table 2: Performance of different models
and their combinations. The first 3 rows
show the performance of the source network
Fs when averaging the predictions of multi-
ple translations K, of a target image while
rows 4, 5 show the performance of the target
networks Ft , trained with different degrees
of stochasticity (σ2) in the translation. Aver-
aging the predictions of multiple translations
and combining the three models allows us to
obtain better pseudo-labels for the target do-
main.

Network ensembling: Table 3 shows the results obtained in three rounds of pseudo-labeling
and training, following the approach of [5, 16, 36]. In the first round (R = 0) we train the
target and source networks with Eq. 4 and Eq. 9 respectively using the synthetic and real data
and average the predictions of the three models to generate pseudo-labels for the target data.

Model mIoU
Fs (R=0) 44.4
Ft , σ2 = 1 (R=0) 46.6
Ft , σ2 = 10 (R=0) 46.1
Ens (R=0) 48.2
Fs (R=1) 49.1
Ft , σ2 = 1 (R=1) 50.1
Ft , σ2 = 10 (R=1) 50.9
Ens (R=1) 52.0
Fs (R=2) 51.3
Ft , σ2 = 1 (R=2) 53.0
Ft , σ2 = 10 (R=2) 52.9
Ens (R=2) 54.3

Table 3: Ablation study on
GTA to Cityscapes. Aver-
aging the predictions (Ens)
of a source network Fs,
and two target networks Ft
trained with different de-
grees of stochasticity (σ2)
in the translation allows
to obtain robust pseudo-
labels, while using multi-
ple rounds R of pseudo-
labeling and training im-
proves the overall perfor-
mance.

In the second round (R=1) we use the generated pseudo-labels
as ground-truth labels to train the target and source networks
with Eq. 8 and its source-domain counterpart respectively. We
observe that the pseudo-labels obtained by ensembling im-
prove the performance of each individual network, as well as
the ensemble obtained in the last round (R=2).
Benchmark results: We use DeepLabV2 [4] with ResNet101 [9]
backbone, and FCN-8s [17] with VGG-16 [27] for the seg-
mentation and compare with [5, 16, 21, 30, 36, 37] which use
exactly the same experimental settings. We report both the
results obtained using a single target network and the results
obtained by ensembling. We provide qualitative results in the
supplementary material. The results (per-class IoU and mIoU
over 19 classes) for the GTA-to-Cityscapes benchmark and
ResNet101 backbone are summarized in Table 4. In the sup-
plementary material we provide results obtained using FCN-8s
with VGG-16 and comparison with additional state-of-the-art
methods. Our results show that our method achieves state-of-
the-art performance and outperforms previous methods. When
compared with other approaches relying on both determin-
istic translation and multiple rounds of pseudo-labeling and
training [5, 16, 36], our approach performs better while at
the same time is simpler. The results for the SYNTHIA-to-
Cityscapes benchmark and ResNet101 backbone are reported
in Table 5. In the supplementary material we provide results
obtained using FCN-8s with VGG-16 and comparison with
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additional state-of-the-art methods. Following the evaluation protocol of previous stud-
ies [5, 16, 30, 36, 37] we report the mIoU of our method on 13 and 16 classes. We observe
that our method outperforms previous state-of-the art methods by a large margin (+3.7 com-
pared to DPL[5]). We note here that the domain gap between SYNTHIA and Cityscapes
is much larger compared to the domain gap between GTA and Cityscapes. We attribute
the substantial improvements obtained by our method to the stochasticity in the translation
which allows us to better capture the range of scenes encountered in the two domains and
to generate sharp samples even in cases where there is a large domain gap between the two
domains.
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mIoU
ResNet101 backbone

AdvEnt[30] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
BDL [16] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
LTIR [14] 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2

FDA-MBT [36] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
PCEDA [37] 91.0 49.2 85.6 37.2 29.7 33.7 38.1 39.2 85.4 35.4 85.1 61.1 32.8 84.1 45.6 46.9 0.0 34.2 44.5 50.5
TPLD [26] 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2

Wang et al. [32] 90.5 38.7 86.5 41.1 32.9 40.5 48.2 42.1 86.5 36.8 84.2 64.5 38.1 87.2 34.8 50.4 0.2 41.8 54.6 52.6
PixMatch [21] 91.6 51.2 84.7 37.3 29.1 24.6 31.3 37.2 86.5 44.3 85.3 62.8 22.6 87.6 38.9 52.3 0.65 37.2 50.0 50.3

DPL-Dual (Ensemble) [5] 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3
SUDA [38] 91.1 52.3 82.9 30.1 25.7 38.0 44.9 38.2 83.9 39.1 79.2 58.4 26.4 84.5 37.7 45.6 10.1 23.1 36.0 48.8
CaCo [11] 91.9 54.3 82.7 31.7 25.0 38.1 46.7 39.2 82.6 39.7 76.2 63.5 23.6 85.1 38.6 47.8 10.3 23.4 35.1 49.2

Ours 93.3 56.5 85.9 41.0 33.1 34.8 43.8 43.8 86.6 46.5 82.5 61.1 30.4 87.0 39.7 50.7 8.8 34.9 46.8 53.0
Ours (Ensemble) 93.4 55.8 86.4 44.4 36.1 34.6 45.0 39.8 86.9 48.0 84.4 61.7 30.9 87.7 44.9 55.9 11.1 38.4 45.4 54.3

Table 4: Quantitative comparison on GTA5→Cityscapes. We present per-class IoU and
mean IoU (mIoU) obtained using VGG and ResNet101 backbones.
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mIoU mIoU*
ResNet101 backbone

AdvEnt[30] 85.6 42.2 79.7 - - - 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 - 48.0
LTIR [14] 92.6 53.2 79.2 - - - 1.6 7.5 78.6 84.4 52.6 20.0 82.1 34.8 14.6 39.4 - 49.3
BDL [16] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4

FDA-MBT [36] 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5
PCEDA [37] 85.9 44.6 80.8 - - - 24.8 23.1 79.5 83.1 57.2 29.3 73.5 34.8 32.4 48.2 - 53.6
TPLD [26] 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5

Wang et al. [32] 79.4 34.6 83.5 19.3 2.8 35.3 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 48.0 54.6
PixMatch [21] 92.5 54.6 79.8 4.7 0.08 24.1 22.8 17.8 79.4 76.5 60.8 24.7 85.7 33.5 26.4 54.4 46.1 54.5

DPL-Dual (Ensemble) [5] 87.5 45.7 82.8 13.3 0.6 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2
SUDA [38] 83.4 36.0 71.3 8.7 0.1 26.0 18.2 26.7 72.4 80.2 58.4 30.8 80.6 38.7 36.1 46.1 44.6 52.2
CaCo [11] 87.4 48.9 79.6 8.8 0.2 30.1 17.4 28.3 79.9 81.2 56.3 24.2 78.6 39.2 28.1 48.3 46.0 53.6

Ours 85.8 41.7 82.4 7.6 1.9 33.2 26.5 18.4 83.3 86.5 62.0 29.7 83.9 52.1 34.6 51.4 48.8 56.8
Ours (Ensemble) 87.2 44.1 82.1 6.5 1.4 33.1 24.7 17.9 83.4 86.6 62.4 30.4 86.1 58.5 36.8 52.8 49.6 57.9

Table 5: Quantitative comparison on SYNTHIA→Cityscapes. We present per-class IoU and
mean IoU (mIoU) obtained using VGG and ResNet101 backbones. mIoU and mIoU* are
the mean IoU computed on the 16 classes and the 13 subclasses respectively.

5 Conclusions
In this work we have introduced stochastic translation in the context of UDA and showed that
we can reap multiple benefits by acknowledging that certain structures are ‘lost in translation’
across two domains. The networks trained directly through stochastic translation clearly
outperforms all comparable counterparts, while we have also shown that we retain our edge
when combining our approach with more involved UDA approaches such as pseudo-labeling
and ensembling.
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