

Problem Description

Target-domain data encountered at test time may have different distribution from source-domain data encountered at training time.

Problem: Models trained on source do not generalize well on the target domain. **Potential Solution**: Unsupervised domain adaptation (UDA) to adapt a source model to the target-domain dataset.

- Translate a source-domain image to a single target-domain image relying on deterministic translation [1].
- Train a target network based on ground-truth originally available in the source domain.

1. Zhu et al., Unpaired image-to-image translation using cycle-consistent adversarial networks, ICCV 2017 2. Huang et al., Multimodal Unsupervised Image-to-Image Translation, ECCV 2018

3. Lee et al., Diverse Image-to-Image Translation via Disentangled Representations, ECCV 2018

Beyond Deterministic Translation for Unsupervised Domain Adaptation Eleni Chiou (UCL), Eleftheria Panagiotaki (UCL), Iasonas Kokkinos (UCL, Snap Inc.)

Proposed Method

Stochastic Translation and UDA

- Rely on a content-style disentanglement network [3].
- Associate a source-domain image, $x \in S$, with a distribution of image translations to the target domain:

 $\mathbf{T}[\mathbf{x},\mathbf{v}] \doteq \mathbf{G}_{\mathsf{t}}(\mathbf{C}_{\mathsf{s}}(\mathbf{x}),\mathbf{v}), \mathbf{v} \sim \mathcal{N}(\mathbf{0},\mathbf{I}), \mathbf{x} \in \mathcal{S},$

where we encode the content of the source image through $C_s(x)$ and then pass it to the target-domain generator G_t that is driven by the random style code v.

Stochastic Translation and Pseudo-labelling

- Consider a complementary source CNN, F_s , that operates in the source domain. Obtain Monte Carlo estimate of pseudo-labels by exploiting the whole distribution of
- image translations from the target to the source domain:

 $\hat{\mathbf{y}}(\mathbf{x}) = \mathbf{E}_{\mathbf{v}}[\mathbf{F}_{\mathbf{s}}(\mathbf{I}[\mathbf{x},\mathbf{v}])], \mathbf{x} \in \mathcal{T}, \mathbf{v} \sim \mathcal{N}(0, \mathbf{I})$

where I is the inverse transform from the target domain, \mathcal{T} , to the source and v_k is independently sampled from the normal distribution.

Ensemble of a triplet of networks

- Train two target networks, one with the variance left intact and the other with the variance scaled by a constant.
- Average their predictions with those of the source-domain network described previously.

4. Vu et al., ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, CVPR 2019 5 Cheng et al., Dual Path Learning for Domain Adaptation of Semantic Segmentation, ICCV 2021 Code: https://github.com/elchiou/Beyond-deterministic-translation-for-UDA

$$\approx \frac{1}{K} \sum_{k=1}^{K} F_{s}(I[x, v_{k}])$$

Ablation studies on GTA-to-Cityscapes

Stochastic vs deterministic translation

Method	Output space	Pixel space	mIoU
ADVENT[4]	\checkmark		43.8
ADVENT *	\checkmark		42.9
ADVENT *+			
CycleGAN*	\checkmark	\checkmark	45.1
Ours	\checkmark	\checkmark	46.2
Ours w/ L _{sem}	\checkmark	\checkmark	46.6

F_s , K=5	F_s , K=10	$F_t, \sigma^2 = 1$	$F_t, \sigma^2 = 10$	mIoU
				43.3
\checkmark				44.0
	\checkmark			44.4
		\checkmark		46.6
			\checkmark	46.1
	\checkmark	\checkmark		47.7
	\checkmark		\checkmark	47.6
		\checkmark	\checkmark	47.7
	\checkmark	\checkmark	\checkmark	48.2
	<i>F_s</i> , K=5	$F_s, K=5$ $F_s, K=10$ \checkmark	$F_s, K=5$ $F_s, K=10$ $F_t, \sigma^2 = 1$ \checkmark	F_s , K=5 F_s , K=10 F_t , $\sigma^2 = 1$ F_t , $\sigma^2 = 10$ \checkmark

Benchmark results

Method	^{Ioad}	sidewalk	building	l/e _M	$f_{e_{n_{c_e}}}$	Pole	light	sign	vegetation	terrain	sky	person	nider.	car	truck	bu_S	tr'ain	motocycle	bicycle	mIoU
							F	ResNet1	01 backl	oone										
AdvEnt[30]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
BDL [<mark>16</mark>]	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5
LTIR [<mark>14</mark>]	92.9	55.0	85.3	34.2	31.1	34.9	40.7	34.0	85.2	40.1	87.1	61.0	31.1	82.5	32.3	42.9	0.3	36.4	46.1	50.2
FDA-MBT [36]	92.5	53.3	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.5
PCEDA [37]	91.0	49.2	85.6	37.2	29.7	33.7	38.1	39.2	85.4	35.4	85.1	61.1	32.8	84.1	45.6	46.9	0.0	34.2	44.5	50.5
TPLD [26]	94.2	60.5	82.8	36.6	16.6	39.3	29.0	25.5	85.6	44.9	84.4	60.6	27.4	84.1	37.0	47.0	31.2	36.1	50.3	51.2
Wang et al. [32]	90.5	38.7	86.5	41.1	32.9	40.5	48.2	42.1	86.5	36.8	84.2	64.5	38.1	87.2	34.8	50.4	0.2	41.8	54.6	52.6
PixMatch [21]	91.6	51.2	84.7	37.3	29.1	24.6	31.3	37.2	86.5	44.3	85.3	62.8	22.6	87.6	38.9	52.3	0.65	37.2	50.0	50.3
DPL-Dual (Ensemble) [5]	92.8	54.4	86.2	41.6	32.7	36.4	49.0	34.0	85.8	41.3	86.0	63.2	34.2	87.2	39.3	44.5	18.7	42.6	43.1	53.3
SUDA [<mark>38</mark>]	91.1	52.3	82.9	30.1	25.7	38.0	44.9	38.2	83.9	39.1	79.2	58.4	26.4	84.5	37.7	45.6	10.1	23.1	36.0	48.8
CaCo [11]	91.9	54.3	82.7	31.7	25.0	38.1	46.7	39.2	82.6	39.7	76.2	63.5	23.6	85.1	38.6	47.8	10.3	23.4	35.1	49.2
Ours	93.3	56.5	85.9	41.0	33.1	34.8	43.8	43.8	86.6	46.5	82.5	61.1	30.4	87.0	39.7	50.7	8.8	34.9	46.8	53.0
Ours (Ensemble)	93.4	55.8	86.4	44.4	36.1	34.6	45.0	39.8	86.9	48.0	84.4	61.7	30.9	87.7	44.9	55.9	11.1	38.4	45.4	54.3

Method	Pogd	sidewalk	building	lle _W all	fence	Pole	light	sign	Vegetation	sk_{J}	person	ride _r	car	bu_S	notocycle	bicycle	mIoU	mIoU*
						ResN	Jet101 b	backbon	e									
AdvEnt[30]	85.6	42.2	79.7	-	-	-	5.4	8.1	80.4	84.1	57.9	23.8	73.3	36.4	14.2	33.0	-	48.0
LTIR [14]	92.6	53.2	79.2	-	-	-	1.6	7.5	78.6	84.4	52.6	20.0	82.1	34.8	14.6	39.4	-	49.3
BDL [16]	86.0	46.7	80.3	-	-	-	14.1	11.6	79.2	81.3	54.1	27.9	73.7	42.2	25.7	45.3	-	51.4
FDA-MBT [<mark>36</mark>]	79.3	35.0	73.2	-	-	-	19.9	24.0	61.7	82.6	61.4	31.1	83.9	40.8	38.4	51.1	-	52.5
PCEDA [37]	85.9	44.6	80.8	-	-	-	24.8	23.1	79.5	83.1	57.2	29.3	73.5	34.8	32.4	48.2	-	53.6
TPLD [26]	80.9	44.3	82.2	19.9	0.3	40.6	20.5	30.1	77.2	80.9	60.6	25.5	84.8	41.1	24.7	43.7	47.3	53.5
Wang et al. [32]	79.4	34.6	83.5	19.3	2.8	35.3	32.1	26.9	78.8	79.6	66.6	30.3	86.1	36.6	19.5	56.9	48.0	54.6
PixMatch [21]	92.5	54.6	79.8	4.7	0.08	24.1	22.8	17.8	79.4	76.5	60.8	24.7	85.7	33.5	26.4	54.4	46.1	54.5
DPL-Dual (Ensemble) [5]	87.5	45.7	82.8	13.3	0.6	33.2	22.0	20.1	83.1	86.0	56.6	21.9	83.1	40.3	29.8	45.7	47.0	54.2
SUDA [<mark>38</mark>]	83.4	36.0	71.3	8.7	0.1	26.0	18.2	26.7	72.4	80.2	58.4	30.8	80.6	38.7	36.1	46.1	44.6	52.2
CaCo [11]	87.4	48.9	79.6	8.8	0.2	30.1	17.4	28.3	79.9	81.2	56.3	24.2	78.6	39.2	28.1	48.3	46.0	53.6
Ours	85.8	41.7	82.4	7.6	1.9	33.2	26.5	18.4	83.3	86.5	62.0	29.7	83.9	52.1	34.6	51.4	48.8	56.8
Ours (Ensemble)	87.2	44.1	82.1	6.5	1.4	33.1	24.7	17.9	83.4	86.6	62.4	30.4	86.1	58.5	36.8	52.8	49.6	57.9

Qualitative Results

Ground Truth

Results

Train ADVENT[4] using synthetic images obtained from deterministic translation (CycleGAN) and stochastic translation (Ours). Stochastic translation improves performance. * denotes our retrained models.

Robust pseudo-labelling through network ensemble

Rows 1-3: performance of the source network F_s when averaging the predictions of multiple translations K, of a target image. Rows 4-5: performance of the target networks F_t, trained with different degrees of stochasticity in the translation. Row 6-8: performance when averaging the predictions.

> Quantitative comparison on GTA5 \rightarrow Cityscapes. Per-class IoU and mean IoU (mIoU) obtained using VGG and ResNet101 backbones.

> Quantitative comparison on GTA5 \rightarrow Cityscapes. Per-class IoU and mean IoU (mIoU) obtained using VGG and ResNet101 backbones.