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Abstract

Self-supervised learning is a powerful paradigm for representation learning on unla-
belled images. A wealth of effective new methods based on instance matching rely on
data-augmentation to drive learning, and these have reached a rough agreement on an aug-
mentation scheme that optimises popular recognition benchmarks. However, there is strong
reason to suspect that different tasks in computer vision require features to encode different
(in)variances, and therefore likely require different augmentation strategies. In this paper, we
measure the invariances learned by contrastive methods and confirm that they do learn invari-
ance to the augmentations used and further show that this invariance largely transfers to related
real-world changes in pose and lighting. We show that learned invariances strongly affect
downstream task performance and confirm that different downstream tasks benefit from polar
opposite (in)variances, leading to performance loss when the standard augmentation strategy
is used. Finally, we demonstrate that a simple fusion of representations with complementary
invariances ensures wide transferability to all the diverse downstream tasks considered.

1 Introduction

Self-supervised learning has made rapid progress in representation learning, with performance
approaching and sometimes surpassing that of supervised pre-training. In computer vision con-
trastive self-supervised methods driven by data augmentation have been particularly effective
[8, 24]. Data augmentation applies synthetic semantics-preserving transformations to images
during learning, to increase effective data volume and promote invariance to the augmentation
distribution used [13, 44]. By optimising representations so that individual images are similar to
their augmented counterparts [9, 22], and possibly also different to alternative distractor images
[8, 24, 47], self-supervised algorithms have achieved wide success [16].

In this paradigm the properties and efficacy of the learned representation are largely determined
by the augmentation distribution used during self-supervision. To this end a rough consensus
has emerged among many state of the art methods as to a good default distribution that leads
to strong performance on the downstream benchmarks, especially on the ubiquitous ImageNet
object recognition benchmark [14]. For example, image cropping, flipping, colour perturbation
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Figure 1: Our Spatial and Appearance models lead to strong spatial and colour/texture invariance re-
spectively, as measured by both synthetic (first row) and real-world (second row) transforms. Simple
feature fusion (black) dominates individual pathways, as well as state of the art ‘default’ augmen-
tation, providing more consistent performance across all downstream tasks (third and fourth row).

and blurring, are widely applied [10, 16, 24]. However, if augmentation leads to invariance to
the corresponding transformation, then we should ask: do our self-supervised algorithms provide
the right invariances for diverse downstream tasks of interest? For example, while an object
categorisation task might benefit from pose invariance, other tasks such as pose estimation may
require strong spatial sensitivity. If different tasks require contradictory (in)variances, using a single
default data augmentation scheme for all may provide sub-optimal performance for some tasks.
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To investigate this issue, we group augmentations into two categories, spatial and appearance.
Using a representative state of the art contrastive learner MoCo-v2+ResNet50 [10], we train models
exclusively with spatial-style and appearance-style augmentations and compare them to the model
produced by the default augmentation scheme. In particular, we evaluate their resulting invariances
to synthetic and real-world transforms, as well as their performance on a suite of diverse real-world
downstream tasks.

Based on the experimental design outlined above, we attempt to better understand why con-
trastive self-supervised learning works by answering the following specific questions, among
others, with associated results summarised in Figure 1.

Q1 An increasing amount of work has shown that invariances can be learned by learning
augmentations. Do these learned synthetic invariances generalise to real-world invariances? Al:
To some degree, yes. For example, spatial-style augmentations lead to increased invariance to
real-world transforms such as viewpoint, while appearance-style augmentations lead to increased
invariance to transformations such as lighting colour, exposure and blur. Correspondingly, spatial-
style augmentations lead to higher accuracy in estimating object colour, while appearance-style
augmentations lead to higher accuracy in estimating object pose. (Fig. 1 second and third row).
This has not been measured before.

Q2 Given that there are multiple types invariances of potential interest to learn. Is there a
trade-off between learning different types of invariances? A2: Yes. Promoting appearance-style in-
variances decreases spatial-style ones and vice-versa. We also show that all existing state-of-the-art
learners suffer from this trade-off.

Q3 Do different downstream tasks of interest benefit from different invariances? A3: Yes.
Across a suite of downstream tasks, we see that recognition-style tasks prefer a representation
trained on default or spatial-style augmentations, while pose-related tasks benefit from appearance-
style augmentations. In particular, default augmentations [10] under-perform in pose-related tasks
(Fig. 1 fourth row).

Q4 Given that different tasks prefer polar-opposite augmentations, is there a simple way to
achieve high performance across all tasks? A4: Yes. Simple fusion of multiple representations
tuned for different (in)variances leads to consistent strong performance across all tasks considered
(Fig. 1 third and third fourth row, black line).

2 Related Work

Self-supervision: in computer vision is now too a large topic to review here. Please see [17, 26]
for excellent surveys. A key trend is that many highly successful methods rely on matching indi-
vidual images with augmented versions of themselves, possibly against a background of distractor
images. This includes most contrastive methods [7, 24], and some that are not typically considered
contrastive [22, 51]. These have been understood [47] as making image features invariant to
transformations used for training, while otherwise separating individual images. A key ambition
of self-supervision research is for a single pre-trained feature to support diverse downstream tasks,
and a common suite of augmentations has emerged to support this [10, 16]. However if data
augmentation determines (in)variances, and different tasks require different (in)variances, then a
single augmentation distribution may not perform well on all tasks.

Data Augmentation: Data augmentation is the process of transforming input data to increase the
diversity of the training set. It has become key to achieving state-of-the-art performance for super-
vised learning of CNNs in vision [12]. Despite its ubiquity in practice, theoretical understanding of
data augmentation is weak. There is some evidence that CNNs can generalise learned translation
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invariance [3] to unseen data, but also that they retain information about absolute spatial locations
of objects via boundary effects [28].

Data augmentation has become even more vital in practical self-supervision as outlined ear-
lier. However, understanding the role of data augmentation in self-supervision has lagged behind
practical engineering lore. Self-supervised contrastive learners with strong augmentation have
been shown to learn occlusion-invariant representations, but not to capture viewpoint and category
instance invariance [40]. [49] study the theoretical effects of data augmentation on self-supervised
contrastive learning. They argue that data augmentation decouples sparse semantic information in
the input from dense noisy information and that only the sparse semantic information is relevant to
solving the downstream target task. [46] study the effects of data augmentation on invariances and
downstream performances using a synthetic task. They show that it is hard to define augmentations
to enforce a specific invariance, that augmentations generally have wider invariance effects on
groups of factors and that using multiple augmentations in conjunction reliably improves recogni-
tion performance. However they focus on object recognition in a synthetic dataset. We take a wider
perspective and look at how augmentation impacts a wide variety of real-world transformations,
and real-world downstream tasks. A related study to ours is [50], which proposes LooC as a
self-supervised method that separates different information into different features, i.e. colour,
orientation etc. However, they only evaluate the impact on recognition tasks. A major contribution
of ours is to demonstrate how diverse downstream tasks benefit from different learned invariances.
Ventral-Dorsal Visual System: We also briefly highlight an interesting connection between our spa-
tial vs. appearance split and neuroscience. A well established theory about mammalian vision holds
that the visual cortex is composed of two functional pathways [20, 30]. The ventral stream deals
with the “what” of object recognition; and the dorsal stream deals with the “where” of spatial and
motion information. This decomposition into specialised models has been exploited in applications
such as object detection [15] and semantic grasping [25] in robotics. At the intersection of neuro-
science and self-supervised learning, [2] showed that a two branch neural network trained with the
CPC [37] loss on videos leads to dorsal and ventral-like pathways emerging. Moreover, models of
the dorsal stream based entirely on findings from neuroscience and phychophysics (i.e., without use
of machine learning) have been shown to accurately estimate motion and depth from videos [11, 39].

We explore self-supervised learning with different data augmentations as a way of achieving
similar multi-stream pathways in CNNs for vision. Current methods [7, 24] train representations
for invariance to a single set of augmentations that aim to suffice for all tasks. But we show that
this current practice is better optimised for the most popular downstream benchmark of object
recognition, and poor for pose-related tasks. We will investigate a multi-stream architecture com-
bining representations trained for different invariances, and show it provides more general purpose
high performance for diverse downstream tasks.

3 Methods

Our main focus is on analysing the properties of self-supervised models pre-trained with different
augmentation strategies. In particular, we choose MoCo-v2 [10] as a representative self-supervised
learner that is widely used and near state-of-the-art. MoCo-v2 matches images with their augmented
counterparts, while using negative pairs in a contrastive loss to encourage feature dissimilarity
between semantic objects, and to avoid features all collapsing to the same vector. We pre-train three
models using MoCo-v2 [10] with ResNet50 architectures [23] on ImageNet [14] for 200 epochs.

* Default: The default [7, 8, 10, 22, 31] model uses the standard array of data augmentations,
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Table 1: Augmentations used during pre-training of our Spatial and Appearance models, along
with the standard default augmentations [10]. The color jitter augmentation is a combination of
individual jitter in brightness, contrast, saturation and hue.

Resized crop  Horizontal flip  Color jitter ~Grayscale Blur

Default v v v v v
Spatial v v
Appearance v v v

which includes crops, horizontal flips, color jitter, grayscale and blur.

* Spatial: The Spatial model uses only the spatial subset of default augmentations, including
crops and horizontal flips. By learning invariance to these spatial transforms, the model has
to put larger focus on colour and texture.

* Appearance: The Appearance model uses only the appearance-based augmentations of
color jitter, grayscale and blur and will thus have to put larger focus on spatial information.

Table 1 summarises the augmentations used by each model. Apart from these differences, the
pre-training setup is identical for our models. As baselines, we also compare a CNN with Random
weights, and one pre-trained by Supervised learning on ImageNet.

4 Do Contrastive
Methods Learn Invariance to Real-World Transforms?

While several preliminary studies suggest that contrastive methods can learn invariance to synthetic
transformations [47], an important question that has not been studied in the literature is whether
these learned invariances lead to invariance under real-world transforms, like viewpoint or illumi-
nation changes. Does the use of colour augmentations during pre-training lead to features that are
invariant to day/night in real images? Does the use of crop/flip augmentation in training lead to
pose invariance in real images? While these kinds of questions were intensively studied for classic
hand-crafted features [34], they have not been studied for invariances learned by self-supervision. In
this section, we investigate whether contrastive methods learn invariance to real-world transforms.
We address this question from two perspectives: intrinsically, by measuring the invariance of
different representations with respect to different real-world transformations (Section 4.2); and
extrinsically, by quantifying how well features trained for different synthetic invariances can be used
to predict known real-world transformations (Section 4.3). But first, we provide a more thorough
confirmation of the claim that contrastive methods do learn invariances to synthetic transformations.
Measuring invariances: We use two measures of invariance in our experiments, Mahalanobis
distance and cosine similarity (full details in Sec C.1 of supplement). We compute these values
between augmented and unaugmented images, averaged over all images considered. A further set of
measures are reported in Sec C.2 of the supplement with results supporting those in the main paper.
Hypothesis testing: In the following sections we will test several hypotheses based on the cosine
similarity invariance measurements. We make use of Hoeffding’s inequality, which for a sum of ran-
dom variables, S,, = %Zlf’le,-, where each X; is in the range [0,1] with probability one, tells us that

P(S,—E[S,|>1) <e . )
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Table 2: ImageNet pre-trained ResNet50 with MoCo-v2 (200 epochs) evaluated on invariances
to transforms on 1000 ImageNet validation images. Top group: Mahalanobis distance where a
low value means strong invariance. Bottom group: cosine similarity in a normalised feature space
where a value close to 1 means strong invariance. Column colours indicate the type of invariance
evaluated and row colours indicate the augmentation expected to lead to high-performing
specialised models. The broad agreement between the most invariant features (bold) and
expectation (row colours) indicates that training with augmentations does tend to learn the
corresponding invariances. Similarity results within {Default, Spatial, Appearance} that are
statistically significantly the best are annotated with a e.

Resizederop Hflip Vflip Scale Shear Rotation Translation Deform Grayscale Brightness Contrast Sawraion Hue Blur  Shapness Equalize Posterize Invert

Random 69.40 3414 3535 6703 69.57 71.65 56.33 65.28 2281 7325 59.03 46.63 4239 49.17 5259 27.46 2746 32.88
(g Supervised 5744 1233 2407 4037 6393  47.67 2251 3425 19.87 4043 37.05 26.61 3595 5492 42,15 17.44 2274 2732
$ | Default 5872 992 2130 3575 5658 4349 1645 3016 178 2607 2566 1217 1372 6584 3107 1281 1795 2471
[a) Spatial 5943 817 1557 3205 5650 3293 1385 26.08 26.58 46.25 61.67 3934 4733 6337 4883 2541 38.46 2895
Appearance 64.35 2752 2905 5633 7181 6249 33.14 5220 257 19.71 2284 6.98 577 3038 16.86 955 1218 29.24
Random 0.03 056 054 016 004 0.07 0.40 0.20 0.81 0.17 052 0.59 0.60 048 051 0.68 0.70 052
Supervised 0.18 092 071 057 011 043 0.87 0.69 081 0.54 0.64 0.79 064 029 055 0.84 077 0.64
Default 0.19 095 075 063 01l 045 092 072 096 077 079 094 093 029 071 090 083 0.67
Spatial 0.25¢ 096 087¢ 0.70e 0260  0.70e 095« 0.81e 0.65 043 035 0.60 042 025 0.50 0.69 0.62 0.59
Appearance 0.03 063 059 02 003 0.09 0.71 033 1.00 0.88¢ 0.86e 098 0.99% 073« 091« 0.95¢ 091« 0.58

Setting the left-hand side equal to & and rearranging for 7 yields

In(1/6)

PP @
This fact can be used to test the null hypothesis that the expected value of S, is zero: set d to the
threshold that will be applied to a p-value, and check whether S, is greater than the right-hand side
of Eq. 2. If it is greater, then one can reject the null hypothesis. By setting S, equal to the mean
difference in representation similarity for two different methods, we can test whether one method
is statistically significantly more invariant than the other. Bonferroni correction is applied when
we carry out multiple hypothesis tests to perform a three-way comparison.

4.1 Invariance to Synthetic Transforms

Setup: We focus on task-agnostic metrics of invariances. Other extrinsic measures of invariance
like identifiability/classification performance under different transformations are inherently bi-
ased towards that task. We therefore use invariance metrics that apply to feature vectors directly.
We evaluate our Default, Spatial and Appearance methods on 1,000 images from the ImageNet
(ILSVRC12) validation set [14] against a wider array of synthetic augmentation transformations
than used for training (Tab 1), but still group these into appearance and spatial-style transforms.
Results: The results in Tab. 2 evaluate the invariance of different transformations at test-time
(columns) for the different pre-trained models (rows). Using the method described above, we carry
out statistical hypothesis tests to determine which of the Default, Appearance, and Spatial models
reliably exhibit the most invariance, as measured by the similarity metric. Statistically significant
results (at the 95% confidence level) are marked with a e. We make the following observations.
For spatial transformations like rotation and translation, the Spatial model is the most invariant,
due to its use of such augmentations during pre-training. Likewise, the Appearance model has the
strongest invariance to transformations in colour and texture, except for the invert transform. The
Default model tends to fall in between the two specialised models suggesting strong invariance
to any one transformation is traded off for a reasonable variance across the board. The Random
model tends to have the highest variance.

While the spatially-augmented model has very low variance to spatial transforms, it has a high
variance to colour and texture. Its sensitivity to these transforms is available for solving tasks that
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Table 3: Comparing models in terms of their invariances to real-world transformations. Similarity
results within {Default, Spatial, Appearance} that are statistically significantly the best are
annotated with a e.

Flickr1024 ~ COIL100 ALOI ALOT ALOI ALOT ALOI ALOT ExposureErrors ~ RealBlur

Stereo Pose/Scale  Viewpoint ~ Viewpoint Ilumination Iluminati Temp Temp Exposure Blur

Random 5122 39.09 3236 50.83 3337 45.99 1421 41.07 50.14 2241

§ Supervised 27.50 35.40 34.66 43.93 29.72 40.57 10.18 33.03 25.55 25.87
£ | Default 19.96 24.20 20.29 39.96 18.53 3748 6.60 17.34 17.96 19.15
a Spatial 1991 23.19 15.94 41.80 15.73 37.28 1131 54.28 3445 32.52
Appearance 45.37 44.07 38.83 53.62 30.54 41.63 435 8.14 13.15 10.97

. Random 0.62 042 048 0.24 0.58 044 0.90 0.73 041 091
g Supervised 0.90 0.70 0.64 0.67 0.77 0.75 0.97 0.89 0.84 0.89
g T Default 0.94 075 0.77 0.70 0.84 0.76 0.98 097 090 090
a Spatial 0.94 0.84¢ 0.88¢ 0.72 0.90¢ 0.80¢ 0.94 0.78 0.69 0.82
Appearance 0.74 0.54 0.64 032 0.79 0.61 1.00 0.99 0.96¢ 0.98¢

depend on colour or texture. Likewise, the appearance-augmented model is sensitive to spatial
information which it could use to solve spatially sensitive tasks. In fact, since the Appearance
model is more spatially sensitive than the Default model, it might achieve better performance on
such tasks. We investigate this in Sec. 5. Overall the results confirm that invariances are indeed
learned by contrastive learning with corresponding augmentations. Furthermore, augmentations
do tend to increase invariance to other transforms in the corresponding appearance/spatial family,
rather than only the specific subset used for training.

Discussion: We have shown how the use of certain augmentations lead to features that are substan-
tially invariant to those augmentations, as well as others in the same appearance/spatial family. We
next address the main question that has not been studied in the literature of whether these learned
invariances lead to invariances under real-world transforms, like viewpoint or illumination changes.
While these kinds of questions were intensively studied for classic hand-crafted features [34], they
have not been studied for invariances learned by self-supervision.

4.2 Real-World Intrinsic Invariance Measurements

Experimental Details: We use the same metrics as in Section 4.1, but instead of using synthetic
transformations typically used in data augmentation schemes, we collect a suite of datasets that
exhibit known real-world transformations, such as pose changes (Flickr1024, COIL-100. ALOI,
ALOT) and colour/appearance changes (ALOI, ALOT, ExposureErrors, RealBlur). Further dataset
details can be found in the Sec. D of the supplementary materials. In contrast to the experimental
setup in Section 4, we do not have an untransformed reference image. Instead, we consider all
pairs of images for a given object/scene/texture within each dataset (or subset of the dataset for
ALOI/ALOT), and average our metrics across pairs. For example, in the case of viewing angle
variation in COIL-100, a fully pose invariant feature would exhibit full similarity/zero distance
across all corresponding image pairs.

Results: The results in Table 3 group the benchmark datasets according to whether they exhibit
spatial-like or appearance-like real-world translations. We note that the ALOI/ALOT benchmarks’
illumination change condition moves a spotlight in a low ambient light scenario, effectively mask-
ing out different parts of the object. As it is unclear whether this corresponds to a appearance
or spatial-like transformation, we color these separately. From the results we can see that our
models have learned strong real-world invariances in many cases. For example, the spatial model
has maximum similarity for all the (green) spatial-like transformations. The appearance model
has maximum similarity for all the (orange) appearance-like transformations. We carried out
statistical hypothesis tests to determine which of the Default, Spatial, and Appearance models
exhibit the most invariance to each type of transformation. These tests were carried out with a
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Table 4: Comparing models learned invariances on Causal3DIdent. Regression R” fit when
predicting parameters from features. Our Appearance model is highly sensitive to spatial-style
transforms and our Spatial model highly sensitive to appearance-style transforms. Our fused

models exhibit strong predictive capability across the board.
Obj. Pos. x  Obj. Pos.y Obj. Pos.z Obj. Rot. x  Obj. Rot. y Obj. Rot. z  Spot. Pos.  Obj. Colour  Spot. Colour Bkg. Colour

Spatial 0.89 091 0.84 0.66 0.67 0.62 0.92 0.93 0.91 1.00
Appearance 0.94 097 091 0.80 0.84 0.79 095 0.56 022 0.88
Spa+App 0.94 0.97 091 0.80 0.82 0.77 0.95 0.92 0.90 1.00
Def+Spa+App 0.95 0.97 0.94 0.87 0.89 0.85 0.96 0.92 0.89 1.00

confidence level of 95%, and statistically significant maxima are marked with a e. That the spatial
model trained with crops and flips achieves stronger illumination invariance than one trained with
colour augmentations on the ALOI/ALOT datasets is interesting, and highlights the importance
of understanding the role of data augmentation better in representation learning.

Summary: In summary, we asked Q1: Whether invariances learned using data augmentation
generalise to real-world transforms? Grouping by appearance and spatial family invariances and
real-world transforms, the answer is yes. To visualise this qualitatively, we report in Figure E.1
of our supplementary materials the rank correlation (over our five models) between all pairs of
synthetic and real-world invariances considered. From the results we can see a clear block structure
that strong invariance to appearance-like synthetic transforms correlates with the appearance-like
real-world transforms, and vice-versa. More formally, the statistical significance tests in Table 3
show that five of eight comparisons show statistically significant impact of training augmentation
with real-world transformation invariance.

For Q2: Is there a trade-off between learning different types of invariances? A2: Yes. We have
found that both for synthetic and real-world transforms, increasing appearance-style invariances
decreases spatial-style ones and vice-versa. Models using the default set of augmentations suffer
from this trade-off (we show that other state-of-the-art learners suffer similarly in Fig. F.1 of the
supplement) Next, we look into whether a greater invariance to one family of transforms induces
sensitivity in the other.

4.3 Real-World Extrinsic Invariance Measurements

To provide a different perspective on invariance to real-world transforms, we evaluate our features on
the Causal3DIdent benchmark. In particular, we follow [40] in regressing real-world variables such
as pose, object colour, light colour, etc. from our features. A feature with complete spatial invariance
would fail to predict pose, while one with colour invariance would fail to predict colour, etc.

Setup: We use kernel ridge regression with an RBF kernel, sample 20,480 training points and
40,960 test points and standardise images and targets. As the feature dimensionality of our models
is much greater than of those in [46], we expand the hyperparameter search space for o and y to
[1074,1073,1072,1071,10%) and [1072,107#,1073,1072,10~",10°,10',10], respectively.

Results: From the results in Table 4 this evaluation paradigm also confirms that learned invariances
translate to some extent to real transformations. The appearance model obtains better performance
on pose prediction tasks, while the spatial model obtains better performance on colour prediction
tasks.
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Table 5: Downstream performances of our models. We report mean and standard deviation of 5-fold
cross-validation on all data for each task. The differing performances in the tasks showcases how the
Spatial and Appearance models capture important but different properties necessary for wide transfer.
Random refers to a randomly initialised feature extractor and ‘+’ refers to feature concatenation.
On the left datasets we report the classification accuracy and on the right the R? regression metric.
Row colours indicate whether appearance or spatial turned out better for the given task.

CIFAR10 Caltech101 Flowers 300W CelebA LSPose ‘ Avg.
Random 0.55£0.004 0.25+0.008 02140009 024+0.024 047£0.002 0.10+0.007 | 0.30 £ 0.009
Supervised 0.98 £0.001  0.90 +0.005 0.86+0.007 0.17 £0.028 049 £0.002 0.20+0.015 | 0.60 £ 0.010
Default 0.96 £0.002 0.87+£0.006 0.834+0.004 0470014 0.60£0.002 0.29+0.025 | 0.67 + 0.009
Spatial 0.92 £0.003 0.65+0.008 0.744+0.010 0.17+0.030 049 +0.001 0.24+0.020 | 0.54 +0.013

Appearance ‘ 0.84 +£0.003 0.57£0.007 0.20+0.009 0.68 +£0.018 0.62+0.003 0.25+0.021 | 0.53+0.010

3 xDefault 0.96 +0.004 0.87 £0.004 0.83+0.007 052+0.012 0.67+0.001 031+£0.016 | 0.69 %+ 0.007
Default(x3) 0.96 £0.002 0.88+0.003 0.824+0.009 042£0.030 0.65+0.005 0.31+0.028 | 0.67+0.013
Spa+App 0.95+£0.002 0.74+0.009 0.6840.005 0.62+0.021 0.64+0.002 0.29=+0.007 | 0.65+ 0.008
Def+Spa+App | 0.954+0.003 0.86+0.009 0.81 £0.006 0.65+0.020 0.68 & 0.002 0.33 £ 0.010 | 0.71 & 0.008

5 Do Downstream Tasks Prefer Different Invariances?

In the previous sections we have showed how contrastive training under data augmentation learns
invariance to synthetic and real-world transformations. It also confirmed the colour/texture sensi-
tivity of the Spatial model and the spatial sensitivity of the Appearance model. The Default model
was found to always fall in between the two more specialised learners, with weaker invariance than
one alternative but stronger than the other.

In terms of real-world benchmarks, self-supervised methods are widely evaluated on Ima-
geNet recognition, with the literature having a lesser focus and lack of consistency in evaluation
of other non-recognition tasks. Since the default augmentations are largely chosen to optimise
recognition benchmarks, there is a chance that it may be overfit to these tasks and perform less
well on others. We therefore investigate how learned invariances affect a more diverse suite of real
downstream tasks of interest, hypothesising that different features may be preferred, depending
on the (in)variance needs of each downstream task.

Experimental Details: Our suite of downstream tasks consists of object recognition on standard
benchmarks CIFAR10 [29], Caltech101 [18] and Flowers [30]; as well as a set of spatially
sensitive tasks including facial landmark detection on 300W [42] and CelebA [33], and pose
estimation on Leeds Sports Pose [27]. We freeze the backbones and extract features from just after
the average pooling layer of the ResNet50 architectures. We fit a ridge or logistic regression model
on these features, depending on the task in question. To tune the 2 regularisation value we perform
5-fold cross-validation over a grid of 45 logarithmically spaced values between 1076 to 10, follow-
ing [7, 16]. We report the mean and standard deviation for the hyperparameter choice with highest
mean. The performance is reported as accuracies (between 0 and 1) for classification tasks and R?
values for regression tasks. For comparison we also evaluate random and supervised backbones.

Results: Table 5 shows the linear readout performance on all tasks considered. On the datasets
most similar to ImageNet: CIFAR10, Caltech101 and Flowers, the Default or Supervised models
achieve the highest classification accuracy, followed by the Spatial and then the Appearance model.
On the spatially sensitive tasks the Appearance model outperforms the Spatial model substantively,
with the Appearance model performing best overall on 300W. These results show some evidence
that the Default (and to a lesser extent Spatial model) model is well suited for object recognition on
ImageNet-like datasets, but both are weak in comparison to a model with more spatial sensitivity
when solving the pose-related tasks. Overall this supports the hypothesis that different (in)variances
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are required for best performance on different types of tasks. To answer Q3: Do different
downstream tasks of interest benefit from different invariances? A3: Yes. On our classification
tasks, representations trained on default or spatial-style augmentations dominate. Pose-related tasks
benefit from appearance-style augmentations, where default augmentations under-perform.

Improving Performance Through Feature Fusion: Our previous analyses show that different
real-world tasks prefer different invariances. The Default model tries to satisfy them all by using
a mix of augmentations to obtain a moderate amount of invariance to all transformations (Sec 4),
but appearance/spatial specialised features can be better for particular tasks (Table 5, top). We
therefore explore whether a fusion of specialised features can perform competitively across the
board. In particular we explore Spatial-Appearance (Spa+App) fusion, as well as three way
Default-Spatial-Appearance (Def+Spa+App) fusion.

Experimental Details: The evaluation follows the setup described above, but as our fused rep-
resentations have higher dimensionality, we shift the £2 search space for Spa+App to 107 to 10°
and Def+Spa+App 10~ to 107. Finally, to compare the concatenated features of Def+Spa+App,
we evaluate a second Default model with a 3 wider architecture — ResNet50(x3) — which was
trained with MoCo-v2 for 200 epochs on ImageNet like our other models and uses the same
hyperparameter search space as Def+Spa+App. A final baseline consisting of three fused separately
trained Default models forms 3 x Default.

Results: From the results in Table 5 (bottom) and Table 4 (bottom), we can see that the Spa+App
model and Def+Spa+App fusion models perform strongly across the board. While the 3 x Default
and Default(x 3) models are unsurprisingly best for recognition tasks, this is only by a small margin;
while the 3-way Def+Spa+App fusion is dramatically better for 300W, and the most consistent
performer across the board. To answer Q4: Is there a simple way to achieve high performance
across all tasks? A4: Yes. We fuse multiple representations tuned for different (in)variances for
consistently strong performance across all tasks considered.

This result is noteworthy, as a goal of self-supervised learning is to provide a single feature that
provides excellent performance for diverse downstream tasks. While we showed the default model
falls down in this regard, our fused feature provides reliable performance across the board. We there-
fore recommend it to practitioners who want a single feature with which to perform diverse tasks.

6 Discussion

We have performed the first thorough evaluation of self-supervised learning in terms of augmen-
tations used for training, and resulting downstream invariance and task impact. In particular we
showed that: (1) CNNs trained contrastively do learn invariances corresponding to the augmenta-
tions used and specialising CNNs to particular appearance/spatial augmentations can lead to greater
corresponding invariances (Table 2). Furthermore, learning invariances to synthetic transforms
does provide a degree of invariance to corresponding real-world transforms (Table 3, Fig E.1).
(2) Different real-world downstream tasks do prefer features providing different invariances (Ta-
ble 5, Fig. F.1), and invariance-specialised features can sometimes outperform the standard default
augmentation, e.g., for spatially sensitive tasks. (3) Fusing features tuned for different types of
invariances provides a consistently high performing strategy (Table 5). This outperforms the default
model on pose related tasks, suggesting that it was over-tuned for recognition. Our feature ensemble
strategy is promising for providing high performance general purpose real-world features. Based on
these results we encourage the SSL community to evaluate on more diverse downstream task types.
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