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Abstract

Compression and reconstruction of visual data have been widely studied in the com-
puter vision community. More recently, some have used deep learning to improve or
refine existing pipelines, while others have proposed end-to-end approaches, including
autoencoders and implicit neural representations, such as SIREN and NeRV. In this work,
we propose Neural Visual Representation with Content-adaptive Embedding (CNeRV),
which combines the generalizability of autoencoders with the simplicity and compact-
ness of implicit representation. We introduce a novel content-adaptive embedding that is
unified, concise, and internally (within-video) generalizable, that compliments a power-
ful decoder with a single-layer encoder. We match the performance of NeRV, a state-of-
the-art implicit neural representation, on the reconstruction task for frames seen during
training while far surpassing for frames that are skipped during training (unseen im-
ages). To achieve similar reconstruction quality on unseen images, NeRV needs 120×
more time to overfit per-frame due to its lack of internal generalization. With the same
latent code length and similar model size, CNeRV outperforms autoencoders on recon-
struction of both seen and unseen images. We also show promising results for visual data
compression.

1 Introduction
Visual data compression remains a fundamental problem in computer vision, and most meth-
ods can be seen as autoencoders, consisting of two components: encoder and decoder. Tra-
ditional compression methods, such as JPEG [46], H.264 [48], and HEVC [40], manually
design the encoder and decoder based on discrete cosine transform (DCT) [3]. With the suc-
cess of deep learning, many attempts [2, 8, 15, 21, 22, 24, 34, 35, 49] have been made to re-
place certain components of existing compression pipelines with neural networks. Although
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Figure 1: CNeRV achieves the highest unseen PSNR and matches state-of-the-art seen
PSNR, at fast encoding speeds. CNeRV and NeRV are image-wise neural representa-
tions, ConvAE/ConvAE* are convolutional autoencoders with small/large embedding, re-
spectively; SIREN, FFN, NeRF, and MLF are pixel-wise neural representations.

these learning-based compression methods show high potential in terms of rate-distortion
performance, they suffer from expensive computation, not just to train, but also to encode
and decode. Moreover, as a result of being partially hand-crafted, they are also quite reliant
on various hard-coded priors.

To address the heavy computation for autoencoders, implicit neural representations [7,
30, 33, 36, 38] have become popular due to simplicity, compactness, and efficiency. These
methods show great potential for visual data compression, such as COIN [13] for image
compression, and NeRV [5] for video compression. By representing visual data as neural
networks, visual data compression problems can be converted to model compression prob-
lems and greatly simplify the complex encoding and decoding pipeline.

Unlike other implicit methods that map a single network to a single image, NeRV trains
as a single network to map timestamps to RGB frames directly for entire videos. This allows
NeRV to achieve incredible results for video compression. However, because NeRV’s input
embedding comes from the positional encoding of an image/frame index, which is content-
agnostic, NeRV can only memorize. This is evidenced by it achieving surprisingly poor
reconstruction quality for unseen data (images/frames that are skipped during training), even
when these images only deviate very slightly from images it has seen. This means that NeRV
can only work with a fixed set of images that it has seen during training time, and it could
never perform, for example, post-training operations such as frame interpolation.

We thus propose Content-adaptive Neural Representation for Visual Data (CNeRV) to
enable internal generalization. With a content-adaptive embedding, rather than a temporal/index-
based embedding, CNeRV combines the generalizability of autoencoders (AEs) with the
simplicity and compactness of implicit representation. Similar to implicit representations,
CNeRV has a strong decoder, and stores most of the visual prior in the neural network itself.
Given a tiny embedding, CNeRV can reconstruct the image with high quality, just as NeRV
does, and serves as an internally-generalizable neural representation, shown in Figure 1.

We summarize our primary contributions as follows:
• We propose content-adaptive embedding (CAE) to effectively and compactly encode

visual information, and generalize to skipped images for a given video/domain.
• We propose CNeRV based on CAE, which leverages a single-layer mini-network to

encode images (120× faster than NeRV), with no need for the time-consuming per-
image overfitting used by implicit representation methods.
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• We demonstrate that CNeRV outperforms autoencoders on the reconstruction task
(+9.5db for seen image PSNR, +3.5db for unseen image PSNR).

• We show promising video compression results for both unseen and all frames when
compared with traditional visual codec such as H.264 and HEVC.

2 Related Work

Neural Representation. Implicit neural representations can be divided into two types:
pixel-wise representation and image-wise representation. Taking pixel coordinate as input,
pixel-wise representation yields outputs based on the input queries, and have become popu-
lar for numerous applications, including image reconstruction [38], shape regression [7, 30],
and 3D view synthesis [36]. For image-wise implicit representation, NeRV [5] outputs the
whole image given an index, which greatly speeds up the encoding and decoding process
compared to pixel-wise methods, and a recent E-NeRV [20] improves the architecture de-
sign. CNeRV is also an image-wise representation method. As [26] points out, most im-
plicit functional representations rely on fitting to each individual test signal, which can be
expensive, even with meta-learning [42] to reduce the amount of regression necessary. Al-
though we focus entirely on image reconstruction, and its relationship with video-related
tasks, we select from these methods some suitable baselines that warrant comparison. We
choose MLP-based methods which leverage (a) periodic activations, such as SIREN [38] and
MLF (Modulated Local Functional Representations) [26], and (b) Fourier features, such as
NeRF [28] and FFN (Fourier Feature Network) [41].

Autoencoders. Our work is related to other works where a network learns to represent
an image in a way that either relies on or later lends itself to reconstruction of the image.
Of these methods, ours is closely related to auto-encoding [3, 17, 32, 45], which focuses
on encoding and reconstruction of real images, sometimes by leveraging adversarial tech-
niques [9, 10, 11, 25] that were originally proposed to help synthesize new images [14].
Numerous algorithmic and architectural improvements [6, 12, 43, 44] were introduced later
based on the vanilla autoencoder. We take vanilla convolutional autoencoder and convolu-
tional VAE as baselines in this work. In fact, our method is akin to an autoencoder that is
optimized for data compression: the encoder is very small and fast, while the decoder is
reasonably quick and not excessively large.

Visual Codec. Borrowing principles from image compression techniques [39, 46] and trans-
form coding methods [3, 4], traditional video compression methods such as MPEG [18],
H.264 [48], and HEVC [40] are designed to be both fast and accurate. Recently, deep learn-
ing techniques have been proposed to replace portions of the video compression pipeline [2,
5, 8, 15, 16, 21, 22, 23, 34, 35, 49]. Although these learning-based methods show promis-
ing results for rate-distortion performance, most of them suffer from complex pipelines and
heavy computation. Of all the methods referenced in this section, ours is most closely related
NeRV [5], which converts frame index to a positional encoding to allow a neural network
to memorize and compress a video. Covered in more detail in Sec. 3, a primary difference
from NeRV is CNeRV’s use of a content-adaptive embedding, which allows CNeRV to en-
code frames that were skipped during training time.
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Figure 2: (a) NeRV represents videos or image datasets as neural neworks, taking an image
index as input, and outputting the whole image. (b) CNeRV also stores visual priors in
neural networks, but by taking a content-adaptive embedding as input, it can easily generalize
internally to unseen (skipped) frames. (c) CNeRV encoder first divides the input image into
blocks, then computes content-adaptive embedding, and finally reduce the embedding length
with a 1× 1 convolution. (d) CNeRV decoder consists of block-wise computation (1× 1
convolution) and image-wise computation (3×3 convolution), more details are in Figure 3.

3 Method

Our work on representation and compression for visual data builds on NeRV. We replace
their content-agnostic positional embedding with a proposed content adaptive embedding
and a single-layer neural encoder. To clarify the relationship between CNeRV and NeRV,
we first revisit NeRV in Sec. 3.1, then present CNeRV to introduce internal generalization in
Sec. 3.2, and finally how it can be leveraged for visual data compression in Sec. 3.3.

3.1 Revisiting NeRV

As shown in Figure 2, NeRV takes as input an image index t, normalized between 0 and
1, and outputs the whole image directly, through an embedding layer and a neural network.
The image embedding is given by a positional encoding function:

Γ(t) =
(

sin
(
b0

πt
)
,cos

(
b0

πt
)
, . . . ,sin

(
bl−1

πt
)
,cos

(
bl−1

πt
))

(1)

where t is the image index, b is the frequency value, and l is the frequency length. Specif-
ically, the NeRV network, as illustrated in Figure 3(a), consists of a multi-layer perceptron
(MLP) and stacked NeRV blocks. To upscale the spatial size, a NeRV block stacks a convo-
lution layer, a pixelshuffle module [37], and an activation layer, as illustrated in Figure 3(b).
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(a) NeRV architecture
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Figure 3: Left: NeRV consists of MLP and NeRV blocks. Middle: NeRV block. Right
CNeRV consists of block-wise computation (1×1 convolution) and image-wise computation
(NeRV blocks with 3×3 convolution).

3.2 CNeRV: Content-adaptive Neural Representation for Visual Data

To ameliorate NeRV’s lack of internal generalization (results in supplementary material),
motivated by its failure to properly correlate neighboring frames, we propose a different em-
bedding. Rather than a positional encoding, which is content-agnostic, we design a content-
aware encoding. We create a single-layer encoder to perform a learned transform on this
encoding and use NeRV decoder for reconstruction.
CNeRV Encoder We introduce a tiny, single-layer encoder in Figure 2(c) that uses content-
adaptive embedding to achieve internal generalization.

Dividing image into blocks. One insight behind CNeRV is that local visual patterns
can be extracted and act as a visual prior. To achieve this, we first divide each input image
into blocks and encode them in a batch, illustrated in step 1 at Figure 2(c), RC×H×W →
RC×M× H

M ×N×W
N where RC×H×W represents the input image, C the image channel, H and W

image height and width, M and N block numbers
Content-adaptive embedding. To improve the embedding generalization, we encode

the image content into an embedding. Inspired by DCT [3] and positional encoding, we
compute content-adaptive embedding RC×P×Q with

Γ(c, p,q) = ∑
x,y

cos(bp
πx)cos(bq

πy)Img(c,x,y) (2)

where b is the frequency value, p and q are the frequency values, Img(c,x,y) is the pixel
value at location (x,y) for channel c, and x and y are normalized between (0,1). We then
concatenate the block embedding to construct the image embedding RCPQ×M×N as shown in
Figure 2(c) with steps 2 and 3.

Reduce embedding dimension. Since the raw embedding can be very high in length
dimension (CPQ), we introduce a 1×1 convolution to reduce the length and get an embed-
ding RL×M×N . This will be the image latent code and also the input of CNeRV decoder, as
illustrated in Figure 2(c), step 4.
CNeRV Decoder We illustrate the CNeRV decoder in Figure 2(d) and divide it into two
parts: block-wise and image-wise decoding.
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Block-wise Decoding. Given image embedding RL×M×N , we firstly decode it block-
wisely with 1× 1 convolution into Rdhw×M×N . Then we reshape it into Rd×Mh×Nw, which
means every block embedding RL×1×1 is decoded into a Rd×h×w cube. Since this is shared
by blocks, we refer to it as block-wise decoding.

Image-wise Decoding. Given Rd×Mh×Nw, following NeRV [5], we upscale the feature
map into the final image output RC×H×W with stacked NeRV blocks. Since NeRV block
consists of 3×3 convolution and fuses information over the whole image, we therefore refer
to it as image-wise decoding.
Loss Objective Following NeRV [5], we adopt a combination of L1 and SSIM loss as our
loss function for network optimization, following

L = α ∥y− v∥1 +(1−α)(1−SSIM(y,v)) (3)

where y and v are the ground truth image and CNeRV image prediction, and α is a hyperpa-
rameter to balance the loss items.

3.3 Application: Visual Data Compression

Following NeRV, we use model pruning, quantization, and entropy encoding for model com-
pression. Similar to model quantization, we also apply embedding quantization for visual
data compression. Given a tensor µ , a tensor element µi at position i is

µi = Round((µi −µmin)/s)∗ s+µmin,where s = (µmax −µmin)/2bit (4)

‘Round’ is a function that rounds to the closest integer, ‘bit’ is the bit length for quantization,
µmax and µmin are the max and min value for µ , and ‘scale’ is the scaling factor. Using this
equation, each model parameter or frame embedding value can be represented with only
‘bit’ length – by compressing the model and embedding in this way, we achieve visual data
compression. When computing quantized model size, we also use entropy encoding as an
off-the-shelf technique to save space.

4 Experiments

Datasets and implementation details We conduct experiments on both video and image
datasets. For video, we choose Big Buck Bunny [1] (our default dataset), UVG [27], and
MCL-JCL [47] and list their statistics in Table 1. To make it suitable for generation, we crop
the video resolution from 1080×1920 to 960×1920. To evaluate internal generalization on
different resolutions, we downsample video to 480×960 (our default resolution) and 240×
480. We hold out 1 in every 5 images/frames for testing, and thus have a 20% test split set,
referred to as ‘unseen’. We also conduct experiments on Celeb-HQ [19], a face dataset with
12k/3k images for seen/unseen set, and Oxford Flowers [29], which has 3.3k/1.6k images
for seen/unseen set.

For CNeRV architecture on 480×960 videos, the block number M×N is 2×4, frequency
value b is 1.15 and frequency length P and Q are both 15, the block embedding length L is
60, the output size of block-wise decoder d × h×w is 620× 30× 60, followed by 4 NeRV
blocks, each with an up-scale factor of 2. By changing channel width d, we can build CNeRV
with different sizes. For the loss objective, from Equation 3, α is set to 0.7. For NeRV
embeddings, we use b = 1.25 and l = 240 in Equation 1, following the settings from the
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Table 1: Video dataset statistics

Dataset #frames #videos Duration FPS

UVG [27] 3900 7 5s or 2.5s 120
Bunny [1] 5032 1 ∼10min 8
MCL [47] 4115 30 5s 24-30

Table 2: Results on different video datasets

Method Dataset Embed
Length

Total
Size Seen

PSNR
Unseen ↑ Gap ↓

NeRV UVG 480 64M 36.05 23.66 12.39
CNeRV UVG 480 64M 35.83 28.76 7.07

NeRV Bunny 480 64M 33.53 16.46 17.07
CNeRV Bunny 480 64M 33.83 26.85 6.98

NeRV MCL 480 64M 34.83 19.44 15.39
CNeRV MCL 480 64M 34.67 26.98 7.69

Table 3: Results on different model sizes

Method Model
Size

Embed
Length

Total
Size Seen

PSNR
Unseen ↑ Gap ↓

NeRV Small 480 32M 31 16.72 14.28
CNeRV Small 480 32M 31.33 26.41 4.92

NeRV Medium 480 64M 33.53 16.46 17.07
CNeRV Medium 480 64M 33.83 26.85 6.98

NeRV Large 480 97M 35.32 16.04 19.28
CNeRV Large 480 97M 35.5 27.08 8.42

Table 4: Results on video resolutions

Method Video
Resolution

Embed
Length

Total
Size Seen

PSNR
Unseen ↑ Gap ↓

NeRV 240*480 480 60M 37.14 16.9 20.24
CNeRV 240*480 480 60M 36.99 27.97 9.02

NeRV 480*960 480 64M 33.53 16.46 17.07
CNeRV 480*960 480 64M 33.83 26.85 6.98

NeRV 960*1920 480 67M 32.06 16.06 16
CNeRV 960*1920 480 67M 32.4 26.15 6.25

Table 5: Results on training data size

Method Training
Images

Embed
Length

Total
Size Seen

PSNR
Unseen ↑ Gap ↓

NeRV 1k 480 64M 34.6 12.57 22.03
CNeRV 1k 480 64M 34.78 26.41 8.37

NeRV 2k 480 64M 33.53 16.46 17.07
CNeRV 2k 480 64M 33.83 26.85 6.98

NeRV 4k 480 64M 32.78 20.68 12.1
CNeRV 4k 480 64M 32.94 27.75 5.19

Table 6: Results on image datasets

Method Dataset Embed
Length

Total
Size Seen

PSNR
Unseen ↑ Gap ↓

NeRV Celeb 240 33M 27.44 11.27 16.17
CNeRV Celeb 240 33M 27.42 21.34 6.08

NeRV Flower 240 35M 27 11.29 15.71
CNeRV Flower 240 36M 27.04 18.54 8.5

original paper. We evaluate the video quality with two metrics: PSNR and MS-SSIM. Bits-
per-pixel (BPP) is adopted to evaluate the compression ratio. We implement our method in
PyTorch [31] and train it in full precision (FP32), on NVIDIA RTX2080Ti.

We firstly fit the model on the seen split, and evaluate its internal generalization on the
unseen set. When computing “total size” for a representation method, for implicit represen-
tation (e.g., NeRV) we only compute model parameters, while for methods with image latent
code, we compute both model parameters and image embedding size as total size. More
results can be found in the supplementary material.
Comparison to NeRV We present our main result in Table 2, which shows that CNeRV con-
sistently outperforms NeRV in terms of both reconstruction quality of unseen images (unseen
PSNR) and internal generalizability (PSNR gap between seen and unseen frames/images).
Extended tables with more details and results in this section can be found in the supplemen-
tary material. Note that the generalization of NeRV becomes worse when FPS decreases,
i.e., with diversified frame content, while CNeRV retains its generalizability in all cases.
We first verify CNeRV’s superior performance holds under a variety of settings, increasing
model size in Table 3, various video resolution in Table 4, various training images in Table 5.

We then extend our finding on the non-sequential nature of NeRV’s representation to
apply it to an image dataset, using an arbitrary index for each image as the frame index.
NeRV thus takes image index (1/N, ..., N/N respectively for N images) as input. With this
adaptation, we compare them in Table 6 and CNeRV shows superior internal generalization.

There is no question that NeRV and CNeRV both succeed by fitting to their training data.
However, as Figure 4 shows, CNeRV is able to do this without sacrificing generalization for
increasing training epochs (it does not exhibit the same overfitting behavior). CNeRV’s per-
formance for unseen images doesn’t decrease as training time increases, even though its seen
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Table 7: Comparison of encoding time. We fine-tune NeRV on unseen images until it
reaches comparable PSNR with CNeRV.

Method Overfit UVG Bunny MCL

PSNR ↑ FPS ↑ PSNR ↑ FPS ↑ PSNR ↑ FPS ↑
NeRV ✓ 28.69 0.13 26.59 0.14 26.75 0.13
CNeRV 28.76 16.1 (124×) 26.85 16.1 (115×) 26.98 16.1 (124×)

Table 8: Compare with Autoencoders and pixel-wise neural representations

Methods
Image-
wise

Embed
Length

Total
Size

Training
time

PSNR
seen ↑

PSNR
unseen ↑

Encoder
size ↓

Encoding
time ↓

SIREN [38] 480 66M 2× 15.82 15.79 62M 16.9ms
FFN [41] 480 66M 2× 20.69 20.33 62M 16.9ms
NeRF [28] 480 66M 2× 21.04 20.56 62M 16.9ms
MLF [26] 480 66M 2× 21.13 20.61 62M 16.9ms

ConvAE ✓ 480 68M 2× 24.29 23.2 47M 13.4ms
ConvVAE ✓ 480 68M 2× 23.92 21.71 46M 13.7ms
ConvAE* ✓ 12k 68M 2× 26.83 26.15 1.9M 2.9ms

CNeRV (ours) ✓ 480 64M 1/6× 24.35 23.19 0.4M 0.37ms
CNeRV (ours) ✓ 480 64M 1× 33.83 26.85 0.4M 0.37ms

Figure 4: CNeRV keeps increasing seen PSNR and
remains stable on unseen PSNR while NeRV’s better
seen PSNR comes at the cost of unseen PSNR

Table 9: Decoding speed, frames per
second (FPS) reported

Resolution H.264 H.265 CNeRV

480×960 85.4 56.3 123.4
960×1920 24.5 16.2 31.6

Table 10: Interpolation results on
different datasets. We show PSNR of
unseen images with interpolated and
ground truth embedding

Dataset
GT

embedding
Embedding
interpolation

UVG 28.76 28.88
MCL 26.85 26.33
Bunny 26.98 24.94

image reconstruction quality continues to improve. Furthermore, Table 7 points out that CN-
eRV is vastly superior in terms of encoding time for unseen frames, when accounting for the
fact that NeRV must be fine-tuned on those previously unseen images to reach competitive
PSNR. Thus, CNeRV’s internal generalization allows it to save training/encoding time.
Comparison with Other Reconstruction Methods We also compare with autoencoders and
pixel-wise neural representations. For autoencoders, we choose the most common convo-
lutional autoencoder and convolutional variational autoencoder as baselines, referred to as
ConvAE and ConvVAE. They reduce the image into the same block number as CNeRV (i.e.,
2×4) with strided convolution. The block embedding length is the same with CNeRV (i.e.,
60) as well. We also compare with ConvAE* which light neural networks where most visual
information is stored in the huge image-specific embedding. For pixel-wise neural represen-
tations, we choose NeRF [28], SIREN [38], FFN [41], and MLF [26] as baselines. Following
MLF [26], we train a separate auto-encoder to provide content information besides the co-
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Ground  Truth Autoencoder NeRV CNeRV
Figure 5: Video reconstruction for seen frames from video Bunny. CNeRV results are com-
parable to NeRV, while autoencoders suffers from bluriness, due to the fact that without
implicit representation it cannot perform well in the compression setting (tiny embedding).

Ground  Truth Autoencoder NeRV CNeRV
Figure 6: Video reconstruction for unseen frames from Bunny. CNeRV results are similar
for unseen as for seen, while autoencoders is still significantly blurrier than CNeRV. NeRV
suffers from a myriad of failures.

ordinate input. For fair comparison, we keep the latent code the same length as CNeRV. All
other setups also follow MLF [26].

Table 8 shows reconstruction results for both seen and unseen images, as well as en-
coder model size and encoding speed. Note that for encoding time, we only consider the
forward time, ignoring the data loading overhead. With a tiny encoder and strong decoder,
CNeRV outperforms autoencoders and pixel-wise neural representations in many regards,
including reconstruction quality of seen and unseen images, and encoding speed. We show
visualization results for seen images in Figure 5 and unseen images in Figure 6. With the
same embedding length and similar total size, CNeRV outperforms NeRV with better detail,
absence of artifacts, and lack of spillover from previous frames. Although autoencoder with
large embeddings can reach comparable generalization for unseen images, it struggles a lot
for reconstruction of seen images. But, visual differences still exist between CNeRV and
ground truth, and future work can focus on mitigating these issues.

For low reconstruction quality of pixel-wise neural representations, we believe both
these methods are designed and optimized for low-resolution images, and a similar perfor-
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Figure 7: Compression for unseen frames.
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Figure 8: Compression for all frames.

mance drop on high-resolution images is also observed in MLF [26]. For the ConvAE and
ConvVAE, we speculate two potential causes for the inferior reconstruction capacity. First,
due to the fact that the parameters are more evenly balanced between encoder and decoder,
they rely on larger embeddings and struggle for our embedding size. Second, we speculate
that small training datasets likely limit their capability as well. We show in the supplemen-
tary material that increasing model size, embedding length, and amount of training data each
make autoencoders more competitive with CNeRV.

We also compare decoding speed with traditional codecs in Table 9. The decoding of tra-
ditional codecs are measured with 8 CPUs, while CNeRV is measured on 1 RTX2080ti. As
a video neural representation, CNeRV shows good decoding advantage due to its simplicity
and can be deployed easily.
Frame interpolation and Visualization Given neighboring frames are typically similar, we
investigate whether using CNeRV to encode unseen frames is better than interpolating from
the embeddings of the neighboring seen frames. We show these results in Table 10. Interpo-
lated embeddings achieve similar performance with actual CNeRV embeddings for unseen
images across the lower FPS datasets, but significantly lower results for the Bunny dataset.
With the same embedding length and similar total size, CNeRV outperforms NeRV and au-
toencoder with better detail for both seen and unseen frames.
Visual Data Compression We also show visual data compression results for CNeRV, as
discussed in Sec. 3.3. We compare the rate-distortion results with traditional visual codec
such as H.264 and HEVC. For unseen frames, we compare visual comparison results in
Figure 7 where CNeRV bitrates only consider image embedding as all other autoencoder
methods do [2, 8, 23, 35]. Besides, we evaluate compression results on the full video (both
seen and unseen frames) frames where we combine both the image embedding and model
parameters to compute bitrates, CNeRV outperforms H.264 and HEVC on both PSNR and
SSIM with similar bpp in Figure 8.

5 Conclusion
In this work, we propose a content-adaptive neural representation, CNeRV. CNeRV com-
bines the generalizability of autoencoders and simplicity and compactness of neural repre-
sentation. With a single-layer mini-encoder to generate the embedding, CNeRV outperforms
autoencoders for the reconstruction task in terms of image quality (+3.5db for unseen im-
age PSNR), encoding speed (36× faster), and encoder size (116× smaller). We leverage this
content-adaptive embedding with CNeRV to encode unseen images quickly (120× faster
than NeRV), with no need for the time-consuming per-image overfitting. We also show
promising visual data compression results and provide embedding analysis.
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