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Abstract
In recent years many theories explaining the behavior of Wide Neural Networks have

been proposed, focusing on relations of wide networks with Neural Tangent Kernels and
on devising a novel optimization theory for overparameterized models. However, despite
the efforts, real-world models are still not well-understood.

To this aim, we empirically measure crucial quantities for neural networks in the
more realistic setting of mildly overparameterized models and in three main areas: con-
ditioning of the optimization process, training speed, and generalization of the obtained
models. We analyze the obtained results and highlight discrepancies between existing
theories and realistic models, to guide future works on theoretical refinements.

Our contribution is exploratory in nature and aims to encourage the development of
mixed theoretical-practical approaches, where experiments are quantitative and aimed at
measuring fundamental quantities of the existing theories.

1 Introduction
A staggering aspect about neural networks is that they are seemingly able to overfit the train-
ing sample and yet generalize to unseen data. Similar behaviour has been actually observed
in other learning paradigms in overparameterized settings, such as with linear regression [3]
and kernel methods [4, 29], but neural networks are certainly the model characterized by the
most surprising predictive performance on real-world data.

Several recent works [9, 16, 28, 32] have attempted to explain the theoretical underpin-
nings of why neural networks learn and generalize. Inspired by the relation of infinitely wide
neural networks with Neural Tangent Kernel [16, 19], much of this research has focused on
developing a theory for very wide networks, i.e. where the number of parameters m = Θ(nα)
is polynomially bigger than the number of examples n [2, 10, 21, 25] with α > 1, a condi-
tion which is not usually satisfied in real-world models1. While these theoretical results are
being obtained under increasingly milder (and hence more realistic) overparametrization as-
sumptions, they are typically expressed only in terms of asymptotic rates, and it is difficult to
determine whether these results help in explaining the success of actually deployed models.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Consider, for instance, VGG19 which has 144M parameters distributed on 19 layers and was trained on 1.3M
images: already a quadratic polynomial would require an order of 1 trillion parameters per layer for VGG, which is
clearly unattainable for current practice. On the other hand VGG19 is mildly overparameterized, i.e. the number of
parameters per layer is slightly greater than the number of used images.
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Another line of research focuses on strongly experimental work [20], which is exclu-
sively tailored to obtain empirical suggestions for practitioners. Our approach is instead
focused on measuring crucial quantities during training of realistic networks with the aim to
inform theoretical research and to expose points of discrepancy.

The Problem. Neural networks are function approximators usually trained via Empirical
Risk Minimization, but they cannot be understood via classical optimization theory because
they are extremely non-convex [23]. In recent years many researchers have considered al-
ternatives to convexity, concentrating on variants of the Polyak-Łojasiewicz (PL) condition
[26] like PL∗ functions by Liu et al. [22] and the Proxy-PL condition by Frei and Gu [12].

For the PL condition many linear convergence results for first-order optimization meth-
ods are known [7, 14, 17], and the PL coefficient (akin to strong-convexity coefficient) can
be lower bounded in a region nearby the network random initialization [22], thus provid-
ing convergence guarantees if the network weights remain in the vicinity of initial weights,
which is the case for very wide networks. While being a very promising theory, it is currently
not clear if such theorems do hold for smaller networks like those deployed in practice.

Paper Contribution. Our aim is to precisely analyze which points of the current theories
fail to hold empirically when applied to mildly overparameterized networks, i.e. networks in
which the number of weights grows linearly with respect to the number of examples m' cn.
This paper is, to our knowledge, the first one to perform a detailed empirical analysis of
abstract theories tailored at exposing the uneffectiveness of existing theories in certain areas.

We perform quantitative measures of key local quantities related to conditioning, con-
vergence and optimization in the PL function theory to check the impact of reducing the
networks width from polynomial in the number of examples to linear. We show how such
measures can characterize the training progress of real neural models on machine vision
tasks providing, in Section 5, an empirical analysis that compares the prediction of the the-
ory with the observed behavior of trained models, which enables us to spot phenomena that
aren’t currently fully explained.

Our work builds on theories in the area of PL functions and their applicability to neural
networks; in particular we consider a general theory of PL functions convergence by Liu
et al. [22], stability bounds by Charles and Papailiopoulos [6] for generalization, and the
work by Agarwal et al. [1] for the analysis of conditioning.

Differences with related works. Known applications of the theory of Polyak-Łojasiewicz
functions to neural networks are only concerned with the theoretical side. For example, Liu
et al. [22] deals with theoretical convergence issues on wide networks and do not consider
the interplay between conditioning and network depth; we focus instead on empirical con-
vergence monitoring and generalization on mildly overparameterized networks, operating far
from the kernel regime, and on realistic models. Moreover we consider quantitative issues
like convergence speed of real networks which are not addressed by Liu et al. [22].

For what concerns the empirical analysis on wide neural networks, Lee et al. [20] per-
formed a large-scale experiment to study the performance of finite-width networks compared
with their infinite limits, as predicted by the NTK theory [16]. Our approach differs in that
we focus on adherence of the empirical behavior to the presented theory at the level of single
optimization steps, while [20] restricts to comparing the final outcomes of the optimization
process for various finite- and infinite-width models, and thus mainly serves to guide empir-
ical practitioners.
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2 Convergence
We introduce the background on PL functions that we use throughout the paper, referring
the reader to Karimi et al. [17] for known convergence results. We remark that the presented
theory concerning convergence speeds has an analogue in the two-sided PL setting of [31],
thereby extending its possible applications to minimax optimization problems, such as those
present in Generative Adversarial Networks [13] optimization.

Definition 1 (PL Condition). Given a function f : X ⊆ Rm→ R we say that f is µ-PL iff

∀x ∈ X
1
2
‖∇ f (x)‖2 ≥ µ( f (x)− f ∗) (1)

where f ∗ := infx∈X f (x).

The Polyak-Łojasiewicz condition basically states that the norm of the gradient at a point
controls the minimality gap at the current point, and thus for this class of functions necessar-
ily ∇ f (x) = 0 implies that x is a global optimum in X.

PL functions enjoy the useful property of exponential convergence to a point of minimum
value via common first-order otimization methods [7, 14, 17]. In this work we only consider
minimization via gradient descent, but the extension to other algorithms is standard.

Lemma 1 (Convergence speed and radius for PL functions, [17]). Let f : X ⊆ Rm→ R be
µ-PL and L-smooth. Choose an initial point x0 ∈ X and let the sequence of iterates evolve
according to the rule

xk+1 = xk− 1
L

∇ f (xk). (2)

Letting γ := 1− µ

L , the optimality gap decreases exponentially following the formula

f (xk+1)− f ∗ ≤ γ

(
f (xk)− f ∗

)
. (3)

Moreover, the distance from the initial point is bounded by

1
L

∥∥∥xk+1− x0
∥∥∥≤√2( f (x0)− f ∗)

L
1

1−√γ
(4)

Additionally, PL functions theory encompasses convex optimization because strongly
convex functions satisfy the Polyak-Łojasiewicz condition with the same coefficient [17].
Details of the measure of PL coefficients are reported in Appendix B.1.

3 Generalization
We expose a generalization bound for PL functions by Charles and Papailiopoulos [6] and we
highlight our contribution in how the bound’s quantities can be measured on real networks.

Recall that, given a labeled dataset S = {zi = (xi,yi) | i = 1, . . . ,n} with examples sam-
pled i.i.d. (xi,yi)∼D from a distributionD ∈P(X×Y ) and a learning algorithmA, one can
define W 3 wS :=A(S) the algorithm’s output on S. Let ` : X×Y ×Y → R be a convex loss
function, and f : X×W → Y the considered model. Then the empirical training error is:

RS(w) =
1
|S| ∑

(x,y)∈S
`(x,y, f (x;w)). (5)
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In order to parallel classical convex optimization theory we rely on the cited result [6]
that employs the notion of stability [11] to prove a generalization bound for PL functions.

Lemma 2 (Generalization Bound for PL risk, [6, Theorem 3]). Suppose that for every ran-
domly extracted dataset S of n elements, RS is µ-PL, and that the empirical risk is optimized
by gradient descent. Let w∗S be a point of minimum value towards which gradient descent
is converging, whose existance is guaranteed by PL-ness of the objective, i.e. assume that∣∣RS(wS)−RS(w∗S)

∣∣≤ εA. Moreover assume that `(x,y, f (x; ·)) is G-Lipschitz, then for any δ

with probability at least 1−δ we have the estimates

βptw ≤ 2
√

εA

√
2G2

µ
+ 1

n−1
2G2

µ
(6)

|RD(wS)−RS(wS)| ≤
√

M2 +12Mnβptw

2nδ
(7)

where 0≤ `(x,y,y′)≤M and RD(w) := E(x,y)∼D[`(x,y, f (x;w))].
The exposed bound in Equation (6) gives us a way to quantitatively measure stability on

real neural networks, by locally estimating their Lipschitz coefficient G and their PL constant
µ as detailed in Appendix B.1, to produce Figure 4 that we will comment in Section 5.

Let us briefly comment on the role of the PL constant µ and of small-deviations of the
model with respect to its parameters and its inputs as captured by the Lipschitz coefficient
G and its smoothness constant L: as we can see in the definition of γ in Lemma 1 a smaller
smoothness constant and a higher PL coefficient are of benefit to fast convergence.

Concerning generalization we notice similarly the importance of a large µ and a small
Lipschitz coefficient in the quantity 2G2/µ , which appears twice in Equation (6).

We observe moreover that the first term in Equation (6) depends on the amount of opti-
mization performed by the algorithm, and vanishes for a perfect fitting of the training data,
which suggests a connection between overfitting and generalization for PL models.

4 Conditioning
Conditioning2 is extremely important in general optimization theory, since it provides valu-
able information about the speed of convergence to the objective; in the case of neural net-
work it is related to the PL coefficient, as the following Lemma shows:

Lemma 3 (Convergence and Conditioning, [22, Theorem 4.1]). Let F : Ω ⊆ Rm → Rn

be a function and L : Rn → R a µ-PL and L-smooth function on F(Ω). Define K(θ) :=
∇F(θ)T ∇F(θ), which is a n×n positive semidefinite matrix and let λ∗ :=minθ∈Ω λmin(K(θ)),
λ ∗ = maxθ∈Ω λmax(K(θ)). Then h := L◦F is µλ∗-PL and Lλ ∗-smooth on Ω since

‖∇h(θ)‖2 =
∥∥∇L(F(θ))T K(θ)∇L(F(θ))

∥∥ (8)

≥ λmin(K(θ))‖∇L(F(θ))‖2 (9)
≥ λ∗µ(L(F(θ))−L∗) = λ∗µ(h(θ)−h∗). (10)

where L∗ := minζ∈F(Ω)L(ζ ) = minθ∈ΩL(F(θ)) = h∗. The bound on smoothness can be
proved in a similar way by majorization with λmax(K(θ)).

2Let us recall that the conditioning number κ(M) of a rectangular matrix M is the ratio between its highest
singular value σmax(M) = λmax(

√
MT M) and its lowest singular value σmin(M) = λmin(

√
MT M).
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Agarwal et al. [1] provide results on conditioning at initialization and during training of
wide neural networks, namely that conditioning improves exponentially with the depth of the
network. Their results hold for very wide networks, where the networks’ weights displace
from their initialization can be bounded with O(1/

√
m), m being the number of weights in a

single layer, and thus when the Neural Tangent Kernel well-approximates its infinite-width
deterministic limit [16].

Due to the difficulty of extracting quantitative results for smaller networks from the work
of Agarwal et al. [1], we present the ideas of their arguments to give the reader a bit of context
on the qualitative analysis that will be performed on this matter in the experimental section.

Conditioning in Neural Networks Let X ⊆Rd and let n samples zi =(xi,yi)∼D∈P(X×
Y ) be extracted from a distribution D, and let f m : X ×Θ→ Rk be a function representing
the first m layers of a neural network, which is parametric in the weights θ ∈Θ⊆Rt . Let us
define the function Fm : Θ⊆ Rt → Rnk by Fm(θ) := ( f m(x1;θ), . . . , f m(xn;θ)).

We are then interested in studying the eigenvalues of the two different Gram matrices

Gm;θ
i j :=

〈
f m(xi;θ), f m(x j;θ)

〉
, Km;θ := ∇Fm(θ)T

∇Fm(θ), (11)

which are related with network optimization speed [1], since Gm;θ is the kernel matrix when
the neural network is interpreted as a feature extractor and only the last layer is trained; and
Km;θ is instead connect to the PL constant of the network via Lemma 3.

The main observation in the proof of Agarwal et al. [1] is the following relation between
the entries of two G matrices at different layers:

Gm+1;θ = σ̂(Gm;θ ) (12)

where σ̂ is the dual activation function defined by Daniely et al. [8] and is applied entrywise.
This observation allows to control the entries in the G matrices at different layers: off-

diagonal entries converge to zero when iterating, while diagonal entries remain fixed at their
initial values; this observation allows to bound the highest and lowest eigenvalues, and a
similar idea applies to the K matrix via its relations with the deterministic limit of the Neural
Tangent Kernel. More details can be found in Appendix A.3.

Conditioning during Training Because of Lemma 3, convergence speed is ultimately
connected with the minimum eigenvalue of the K matrix encountered during training, and it
is thus interesting to study how conditioning evolves during the optimization trajectory.

Existing theories bound conditioning during training using the distance between weights
at the current time and at the beginning of training, making use of the well-known fact that
for invertible linear operators A and B such that σmin(A)‖A−B‖op < 1 one has (see [24]):

|σmin(A)−σmin(B)| ≤ ‖A−B‖op ≤ ‖A−B‖F , (13)

where ‖·‖op is the operator norm and ‖·‖F is the Frobenius matrix norm.

Equation (13) can then be used with A = Gm;θ(t0) and B = Gm;θ(0) to obtain the required
bound, as the right hand side can be expanded in terms of distance between weights [22].
Such an approach is essentially pessimistic, as it assumes that conditioning is optimal at the
start and that it degrades during training.
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5 Empirical Analysis

In this Section we describe and analyze the performed experiments to check how well real-
world models can be described by the exposed theories.

Experimental Setting. We train several mildly overparameterized FCNs on random sub-
sets of CIFAR10 [18]3. The networks are initialized with Gaussian Kaiming initialization
[15] to preserve the variance of activations in the forward pass; activation functions are
normalized according to Agarwal et al. [1], i.e. having zero mean and unitary variance on
standardized normal inputs. Input data is normalized to satisfy a scaled requirement of the
unitary norm required by Agarwal et al. [1] such that ‖xi‖ =

√
m, where m is the width of

the first layer.

Conditioning at Initialization. We consider FCN networks consisting of 30 layers of
varying widths (1000, 2000, 5000), different activation functions (ReLU and Tanh), over
multiple numbers of randomly extracted examples (100, 200, 500, 1000), either renormaliz-
ing4 after application of each layer or not, and averaging on three random seeds. We measure
conditioning of Gm;θ at initialization over all layers. The experiment has been run on a Tesla
V100 PCIe 16GB GPU.

(1a) Mean log-conditioning of Gm;θ for ReLU FCNs
at initialization; colors represent different examples-
width-ratios of the tested networks.

(1b) Mean log-conditioning of Gm;θ for 500 examples
at varying widths (colored differently); shaded regions
denote 95% confidence intervals.

(1c) Normalized lowest eigenvalue for ReLU net-
works of different widths with renormalization. Infinite
width network line has been obtained using Lemma 12.

(1d) Normalized highest eigenvalue for ReLU net-
works of different widths with renormalization. To
make the graph more clear only the mean is reported.

3Usage of a single dataset to validate the theory has been dictated by the heavy computational requirements of
the experiments. Such a choice should nonetheless not impact the validity of the presented results, because the
tested theories do not contain free parameters to be fitted on the dataset, and experiments are repeated for multiple
random extractions of a subset of the data, thus leaving less chance for an overfit of the results to the dataset.

4i.e. rescaling each datapoint such that its norm is the square root of the number of neurons in the layer.
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Figure (1a) shows that conditioning at initialization effectively decreases exponentially
even for finite-width networks; it is smaller for higher width-examples ratio, and continues
to decrease at each layer when the examples are renormalized; on the other hand, if the
examples are not renormalized, we can find a layer after which conditioning starts to increase
again, probably due to small-width effects in the sampling of gaussian weights that deviate
from the distribution assumptions of Agarwal et al. [1]5. Moreover, larger widths allow to
reach a smaller conditioning for the same sample size (Figure (1b)) and also allow for a latter
departure between the normalizing and non-normalizing behavior.

In Figure (1c) we can see that the lowest eigenvalue (with a rescaling by square root
of width computed accordingly to Appendix B.2) effectively increases as it passes through
different layers, also at finite widths. However it is also clear that it produces a marked
increase in the first layers and it stops at farther layers, with higher values for wider networks.
Analogously we see an inverse trend for normalized highest eigenvalue in Figure (1d). These
observations highlight the need for a more thoughtful conditioning theory for finite-width
networks so that useful hints can be obtained for an optimal tradeoff between computational
resources and convergence speed with respect to network width and normalization layers.

Training Speed and Conditioning. In the second experiment we consider networks of 6
and 9 FCN layers, of width 500, with different activation functions (ReLU, Tanh), and train
them using full-batch gradient descent (without momentum) with mean-squared-error loss
and cross-entropy loss6 over 80 epochs, with various learning rates (0.0005, 0.001, 0.005,
0.01) and different number of randomly sampled examples (50, 100, 250, 500) over three
seeds. To have meaningful results on networks that actually learn, the analysis has been
conducted only on those configurations that have reached accuracy > 12% at the end of
training. The experiment has been run on an A100 SXM4 40GB GPU.

We find that the upper bound on loss decrease given by Lemma 1 matches well the
actual loss decreases at later epochs, while in initial epochs the estimate is too conservative
(Figure (2a)).

Figure (2c) and Figure (2d) show how for networks trained with cross-entropy loss, con-
ditioning worsens very slowly during training, while for higher learning rates it initially
increases very rapidly, but then decreases steadily, ending up lower than the start. The reader
can see how pessimistic are current estimates of eigenvalues based on Equation (13) dur-
ing training in Figure (2b), in which we can see how the bound degrades significantly, and
even becomes vacuous for an high number of examples. We emphasize the importance for
theoretical research to look at possible explanations for this behaviour, which could greatly
simplify the study of neural networks optimization, as the main theoretical difficulties in
providing convergence guarantees lie in the possibility that the lowest eigenvalue may tend
to zero during training.

Practical Conditioning Proxy. Given our findings about conditioning at initialization (Fig-
ure (1a)) and the importance of conditioning for training speed, in principle we would like
to avoid training a network that is too deep for its width, which has the drawback of raising

5According to the original paper renormalization shouldn’t have any effect, but they effectively consider infinite-
width networks implicitly in the definition of the dual activation function (see Lemma 11).

6We include cross-entropy since it is the most common loss for classification networks, even though it is not a
PL function. To make it tractable we report the theory of weakly-PL functions in Appendix A.2.

8The “loss prediction ratio” refers to the ratio of the actual training loss and the bound calculated according
to Lemma 1 where the PL and smoothness coefficients are empirically calculated on the network at the previous
epoch. Local PL coefficients calculations are detailed in Appendix B.1.
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(2a) Ratio between predicted and measured loss de-
crease8 at single epochs for 6-layers ReLU networks
trained under MSE at different learning rates.

(2b) Progression of the lowest eigenvalues of Gm;θ

for ReLU networks trained with MSE is in blue; lower
bounds obtained using Equation (13) are in orange.

(2c) Progression of log-conditioning for ReLU net-
works trained under Categorical Cross-Entropy.

(2d) Progression of log-conditioning for Tanh net-
works trained under Categorical Cross-Entropy.

the conditioning from some point onward. Measuring conditioning directly is inefficient, as
it requires to solve the eigenvalue problem for very big square matrices, whose size is the
product of the networks width and the number of examples, making it impractical.

As we have already observed in Section 4, we expect off-diagonal entries of Gm;θ to go
to zero as the signal propagates throught the layers, hence we propose to measure this proxy
information instead of measuring eigenvalues directly, as this can be used to bound the high-
est and lowest eigenvalues via Gershgorin Circle Theorems, greatly simplifying practical
approximated measurements of conditioning9.

(3a) Maximum row-sum of the off-diagonal entries of
the matrix Gm;θ .

(3b) Minimum value of the on-diagonal entries and the
maximum value of the off-diagonal entries of Gm;θ .

9 A cheaper measure of network conditioning at a certain point in its training trajectory may be useful to stop
training when the expected perfomance gains in terms of loss decrease are not justifyied by their expected costs.
Moreover it could be used in the architecture search paradigm to filter out networks that have worse conditioning at
initialization, as it is indicative of the loss optimization possibilities for that architecture.
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In Figure (3a) and Figure (3b) the difference in behaviour between the normalized layers
and the non-normalized ones is extremely evident, and their divergence point aligns perfectly
with the raise in conditioning that we have already observed in Figure (1a), making these
measures a good proxy even for smaller networks than those observed by Agarwal et al. [1].

Generalization. By measuring the local PL coefficients and estimates of the network Lip-
schitz coefficients, we are able to use Lemma 2 and compute a generalization bound for
networks trained on MSE loss. Figure 4 shows the expected marked decrease with increas-
ing optimization. Despite this, the obtained bounds are vacuous10.

(4a) Generalization bounds for ReLU networks trained
under MSE on logits.

(4b) Generalization bounds for ReLU networks trained
under MSE.

Figure 4: Generalization bounds obtained using the estimates in Lemma 2

6 Conclusions
The performed experiments on realistically-sides models have exposed some discrepancies
with the available theories. We expose the most important ones in the authors opinion, and
briefly comment on their possible consequences.

• The different behavior of conditioning with respect to renormalized and non-renormalized
networks (Figure (1a)), contrary to the observations of Agarwal et al. [1] which only
seem to hold on very wide networks, as hinted by the role that width plays in delaying
the difference between the two settings (Figure (1b)).

A better understanding of this phenomenon could lead to find optimal network widths
in the trade-off between computational requirements and better loss convergence, as
well as the possibility to remove normalization layers on early layers of the networks,
which doesn’t seem to bring conditioning benefits according to Figure (1a).

• The unexpected finding that conditioning worsens very slowly (and can possibly im-
prove) during training, as current theories assume pessimistically that it worsens the
farther the networks parameters are from their initialization (Figures (2b) to (2d)).

10 To the authors opinion, this outcome could be due both to the lack of sharpness on generalization estimates
based on stability, as well as by the small number of examples used in each test (more examples per test could
give non-vacuous estimates, even though these would require a lot more memory than what is currently available
on typical GPUs) or by the large number of weights of the FCN architecture, which impact a lot on measures
that depend on Lipschitz constants. We thus find that the results on generalization are inconclusive, and that more
experiments are necessary to understand the reasons behind the vacuousness of the bounds.
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If this finding were confirmed by other experiments and theoretical reasons, existing
theories would simplify considerably, as convergence guarantees all rely on condition-
ing not worsening too much during training.

• The fact that the available generalization bounds give vacuous estimates (Figure 4)10.
Stricter generalization bounds could give guarantees to all the settings in which neural
models are deployed in critical tasks, such as in automotive or in clinical screening.

This work is, to our knowledge, the first that tries to explicitly quantify abstract theories
about the inner working of neural networks, and to compare the bounds obtained with real-
world experiments. We hope that such an approach can provide useful feedback to theoretical
researchers by pointing out aspects that are not yet completely explained.

Limitations. There are, in general, very few testable theories expressed in quantitative
terms, which necessarily makes it more difficult to test theories on deployed models. We
think that this is an interesting research field in which to invest, and which is still relatively
unexplored. Benefits of such an approach include a faster feedback loop between theory and
practice, and a stronger focus on real-world models, which, as we have highlighted in the
current exposition, do not behave like very wide networks in regards to multiple aspects.

Future Work. Let us conclude by delineating possible research directions for future works.
Conditioning. Future works should consider extending the theory on conditioning to

finite networks, thereby including an estimation of the variance due to randomness in finite-
width initialization, a reconsideration of the role of normalization (which seems more useful
in finite-width settings), and focus on alternative ways to bound conditioning during training,
where it does not worsen as much as previously thought. Moreover, we think that the
search for better conditioning can provide a principled justification to weight initialization
strategies that make networks train better, thus connecting this work with a line of theoretical
investigations by Schoenholz et al., Xiao et al. [28, 30].

Convergence. For what concerns convergence, the current theory has good predictability
at later epochs, while in the initial epochs the networks perform much better than the the-
oretical predictions. This phenomenon has to be investigated in more depth, as there could
be significant gains from having a better model of how networks behave in the first training
epochs, e.g. to discard models that exhibit worse PL constants during an architecture search.

Generalization. In contrast with the partial results obtained concerning convergence and
conditioning, the tested generalization theory gives vacuous bounds. We highlight the need
to assess the cause of this behavior and to develop alternative approaches.

Alternatives to the Polyak-Łojasiewicz condition. We highlight how future theories should
also consider variations of the PL condition like Proxy-PLness [12], and the weak-PL con-
dition [7], since multiple useful loss functions only satisfy the latter.

Extensions to other architectures. Extensions of the presented theories to CNN, ResNets
and Transformers are needed to form a more complete picture of network behavior. Those
can be investigated within the same framework, but require different theoretical calculations
in Lemma 9, Lemma 11 and an adaptation of the results of Agarwal et al. [1] for each
architecture, and are thus left to future works.
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